검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The increases of industrial and technological development and human activities have disturbed the balance of natural nitrogen (N) circulation. These phenomena have induced that large amounts of N are to be present in excess in air, soil and water environment. We investigated the effects of excess of reactive nitrogen (Nr) compounds on soil and water environment ecosystems through literature and case studies, and suggested the strategy of mitigating the acidification in soil and water ecosystems. Nr moves to air, soil and water media, can be converted to different types, and interacts with other chemical compounds. As an efficient N management plan, the evaluation (application of monitoring and safety index) and the chemical restoration (research and development) of the acidification in soil and water environment ecosystems are required to minimize the effects of Nr as well as policies to regulate the various emission sources and amounts of Nr.
        4,000원
        2.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        제주도 안디졸(Andisol) 토양 분포지역 중 화산성 쇄설물과 현무암으로부터 기원된 두 토양의 Bo층을 대상으로 완충능력을 계산하고 토양의 알루미늄 용해도가 완충능력에 미치는 영향을 연구하였다. 주상실험 결과는 pH 6.0과 4.0 부근에서 완충작용이 일어남을 보여 주며, 현무암기원의 토양보다 화산쇄설암기원 토양의 완충능력이 더 큰 것으로 나타났다. 다양한 pH조건에서의 배치평형실험 결과 다량의 알루미늄 함유 광물상을 갖는 제주도 안디졸 토양 Bo층에서의 알루미늄 거동은 Al(OH)3, 이모골라이트 혹은 프로토-이모골라이트 등의 고상에 주로 영향을 받는 것으로 나타났다. Bo층 토양의 광물조성, 배치 평형실험결과, 그리고 주상실험 결과를 종합해 볼 때, pH 4.0 부근에서 나타나는 뚜렷한 완충능력(β)은 깁사이트 및 프로토-이모골라이트의 용해도 특성에 의해서 좌우되는 것으로 해석된다. pH 6.0 내외의 완충작용은 규산염광물의 용해도 및 염기성양이온의 양이온교환반응에 의해 진행되고 있으나, 낮은 염기성 포화도는 토양산성화가 더 진행될 경우 이러한 완충효과가 오래 지속되지 못할 것임을 지시한다.
        3.
        2001.08 KCI 등재 서비스 종료(열람 제한)
        pH(H2O), pH(KCl), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH(H2O) values of paddy soil were 5.23(surface soil) and 5.69(subsoil), and those of upland soil were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KC1) values of paddy soil were 4.59(surface soil) and 4.98(subsoil), and those of upland soil were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil. The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65 me/100g (subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g (subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH(H2O) values and the total amounts of exchangeable cations in soils were 0.6635** (surface soil) and 0.6946** (subsoil), and those between pH(KCI) values and exchangeable cations in soils were 0.6629** (surface soil) and 0.5675**(subsoil).The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.