Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.
A pipe-rack structure exposed to various environmental conditions is one of the critical structures for the safety of a plant industry. Based on a selected, typical pipe-rack structure, this study evaluated the behavior of the pipe-rack structure accounting for the operating condition of the pipe and at the same time the effect of environmental conditions.
Maintenance of plant facilities are becoming important due to lots of recent plant construction. While maintenance of plant facilities are performed, maintenance of plant structures are usually not carried out properly. In this paper, measurement threshold estimation algorithm is developed for maintenance of pipe-rack structure. Currently, field verification of the developed algorithm is being performed on a real pipe-rack structure.
The importance of plant pipe rack safety management has been increased. In this study, a plant safety management system based on IoT(Internet of Things) was constructed in Yeosu Industrial Complex. The purpose of this study is to investigate the structural characteristics performance and structural health monitoring of pipe rack using measured data
By thermal-structural coupled stress analysis, the equivalent stress and total deformation of girder under the influence of the temperature of the liquid within pipeline of pipe-rack structure is studied. Firstly, steady-state thermal analysis is carried out using a commercial software. Then, to perform a thermal-structural coupled stress solution, structural analysis is linked to the thermal model at the Solution level. The simulation results showed that the stress ratio that considers the pipe’s temperature for thermal-structural coupled stress analysis is higher than the stress ratio that consider only the pipe’s weight for structural analysis. The thermal stress caused by temperature convection is found to be influential on the pipe rack structure.