Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at 1400˚C for 2 h and then reduced at 800˚C for 24 h in 3% H2. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.
ZnO nanopowders were synthesized by the sol-gel method using hydrazine reduction, and their gas responses to 6 gases (200 ppm of C2H5OH, CH3COCH3, H2, C3H8, 100 ppm of CO, and 5 ppm of NO2) were measured at 300 ~ 400˚C. The prepared ZnO nanopowders showed high gas responses to C2H5OH and CH3COCH3 at 400˚C. The sensing materials prepared at the compositions of [ZnCl2]:[N2H4]:[NaOH] = 1:1:1 and 1:2:2 showed particularly high gas responses (S = Ra/Rg, Ra : resistance in air, Rg : resistance in gas) to 200 ppm of C2H5OH(S = 102.8~160.7) and 200 ppm of CH3COCH3(S = 72.6~166.2), while they showed low gas responses to H2, C3H8, CO, and NO2. The reason for high sensitivity to these 2 gases was discussed in relation to the reaction mechanism, oxidation state, surface area, and particle morphology of the sensing materials.