In this study, the models before and after improving the support structure of seat motor gear nut are investigated by comparing with vibration analysis. The maximum deformation model 1 becomes higher than model 2. The natural frequency of model 2 becomes higher model 1. The design model to be applied into the safe driving is useful effectively by using the analysis result of the height driving module for automotive power seat.
Various motors have been used in many cars to control the height of automotive seats. As the motor is connected with seat, it can be moved as the convenience of passenger and vibration affects passenger when motor is being driven. In this study, three models are designed. The lengths of link parts and screw axes are increased or decreased respectively in the order of models 1, 2 and 3. The case of motor is made of aluminum alloy and the rest is made of structural steel. As model 1 has the maximum amplitude displacement at 1360Hz by the basis of vibration analysis, model 1 has the most durability among three models. This study result can be effectively utilized with the design on height motor by investigating prevention and durability against its damage.