CRT와 달리 PDP (Plasmadisplaypanel)에서의 휘도는 입력 계조에 따라 선형적으로 증가한다. 이와같은 휘도 특성으로 인해 PDP에서는 역감마 보정을 수행하여야 한다. 저계조에서 CRT의 휘도 증가율은PDP와 비교하여 매우 낮다. 따라서, 역감마 보정 후 저계조 영역에서 표시 가능한 휘도의 개수가 감소하게 되어 의사윤곽이 발생한다. 이와 같은 문제점의 해결을 위해 디더링 또는 오차확산이 사용되고 있다. 그러나, PDP의 저계조에서 이웃한 두계조의 휘도 차가 인간 시각이 인지 가능할 정도로 크기 때문에 디더링 또는 오차확산의 결과에서 소수화소들이 isolated 도트로 인지된다. 본 논문에서는 시공간적인 문턱값 변조를 통해 PDP에서의 저계조 재현 성능을 향상시키는 방법을 제안한다.
1) 앞서언급한 3가지 QC 의 요건으로 분류 될수있다 (환자, 기기, Filming) 2) 위 3 요소중 가장 저급한 한곳에 의해 전체 QC 의 결과가 좌우되므로 전과정 모두에 정도관리의 노력을 기울여야 할것이다. (Patient preparation-Coil application-Proper software control and option selections-State of art filiming and processing) 3) 매일의 Quality저하를 간과할수있다. 그러므로 , 필요에 따라 수주전 혹은 1 년전의 화상(젠 1m) 과 비교해볼 필요가 있다.
방사선 피폭감소를 위해 사용하는 비스무스 차폐체를 적용하여 CT스캔 시 차폐체에 의한 선속경화현상으로 화질이 감소되는 경우가 있다. 이에 G사의 듀얼 에너지 CT의 GSI모드 적용을 통해 화질저하 현상을 줄일 수 있는 에너지 영역대를 찾아보고, 가능성을 실험을 통해 알아보고자 하였다. 그 결과 비스무스 차폐 후 듀얼 에너지 CT 스캔 시 50 keV에서 118±10.6 HU, 50.1±14.6 HU로 화질저하 전 CT value와 가장 유사 하였고(p>0.05), Image J의 Multi-point기능을 적용한 Pixel value에서도 50 keV에서 176.6±7.1, 138.3±1.1로 측정 되었다(p>0.05). CT검사 시 차폐체의 사용은 불가항력적으로 화질저하를 유발하지만 듀얼 에너지 CT 의 GSI기능 적용으로 차폐체를 사용하고도 화질을 유지할 수 있다는 것을 실험을 통해 알 수 있었다. 향후 다양한 차폐체를 듀얼 에너지 CT를 이용, 평가 후 보안 한다면 CT검사의 최대 단점인 피폭 감소를 위한 방사선 차폐체 사용으로 발생한 화질저하라 단점을 극복할 수 있을 것으로 기대된다.
환자의 진단 및 치료를 결정할 때 전산화단층촬영 (computed tomography; CT)은 우수한 해부학 정보를 제공하기 때문에 진단에 큰 도움이 되어 있다. 그에 따른 사용빈도가 증가하고 있으며, 활용 및 응용범위도 확대되어가는 추세이다. 저관전압을 사용해서 CT 검사를 하면 노이즈가 증가한다. 기존의 여러 연구에서는 영상재구성법에 대한 노출조건을 조절하는 방법 등을 시도해서 최적의 화질을 찾는 방법을 찾고 있으나 근본적 문제해결은 되지 못한다. 입력 영상의 신호를 유지하고 노이즈만을 최대한 제거하기 위해서 이중 트리웨이블릿 알고리즘을 적용하였다. 실험결과 100kVp, 회전시간 0.5sec의 영상에서 complex oriented 2d 방을 사용할 경우 노이즈는 8.53에서 4.51로 줄어들었다. 본 연구를 통해서 저관전압 두부 CT에서 발생하는 높은 수준의 노이즈를 최적의 노이즈제거 알고리즘으로 노이즈를 제거하고 환자선량을 낮출 수 있었다. 본 연구결과를 임상에서 사용 시 저선량의 CT 사용이 가능하고 환자 피폭을 줄일 것으로 판단한다.
안면부 CT검사 시 치아교정용 충전물과 주변 해부학적 구조와의 밀도차이에 의해 발생한 화질 저하 정 도와 화질개선 방향을 실험을 통해 정량 및 정성적 분석방법을 통해 알아보고자 하였다. 실험은 64-MDCT (Discovery 750 HD, GE HEALTH CARE, Milwaukee, USA)를 사용하여 치아 충전물로 교정한 치아를 스캔 하였으며 관전압 변화, 실리콘 적용, MAR 알고리즘 적용 유무에 따라 비교하였다. 그 결과 관전압 변화 시 140 kVp에서 10.36 % CT value가 감소하였으며, Silicon 물질 적용 시 약 5.81 %가 감소하여 감소율이 가장 적었다. 정성적 평가결과 MAR 알고리즘 적용 시 관찰자 10명 중 Equivalent가 7명, Acceptable로 3명이 평가하여 MAR 알고리즘 적용 시 상대적으로 가장 화질 개선 효과가 있다고 평가되었다. 따라서 현재 임상 에서 사용하고 있는 검사 파라미터와 더불어 고밀도 인공물을 감소시킬 수 있는 다양한 알고리즘을 적용 하여 스캔 한다면 방사선 피폭선량에 대한 불필요한 부담을 줄일 수 있을 뿐만 아니라 고밀도 인공물을 감 소시켜 영상 데이터의 소실을 줄여 보다 많은 영상정보를 제공 할 수 있을 것으로 사료된다.
위장조영검사는 위장에 바륨 또는 가스트로그라핀과 같은 조영제를 투여한 후 X선을 투과하여 진단하는 검사로서 일시적인 변비나 복통 외 특별한 부작용이 없는 것이 장점으로 위장계통의 질환 진단에 많이 이용되고 있다. 하지만 수검자의 검사에 대한 전반적인 이해부족으로 인한 검사 중 부적절한 움직임과 호흡조절로 화질과 검사의 정확성이 저하되는 경우가 빈번히 발생한다. 검사의 정확성 향상과 화질 개선의 방법으로 위장조영검사의 검사 과정과 주의할 점을 동영상으로 제작하여 검사 전 대기시간을 이용하여 시청하게 함으로써, 동영상을 이용한 교육이 화질 개선과 검사의 정확성 향상에 어느 정도 효과가 있는지 조사하였다. 2014년 위장조영검사 수검자 2,940명, 2015년 위장조영검사 수검자 3,076명 중 각각 30대부터 80 대까지 10명씩 무작위 선출한 60명을 대상으로 교육 전, 후의 영상을 평가하였다. Image J 프로그램을 이용하여 각 영상의 프로파일에 대한 반치 폭을 측정함으로써 영상을 평가하였다. 반치 폭은 교육 전 0.208 mm, 교육 후 0.133 mm로 나타났다. 따라서 검사 전 동영상교육이 화질 개선에 효과가 있다는 것을 알 수 있었다.
본 연구에서는 DSA 장치에 의하여 획득된 영상을 고역 통과 필터링 알고리즘을 구성하여 구성된 알고리즘으로 실험을 하여 혈관조영상의 화질을 개선하는 방안을 제안하였다. 고역 통과 필터(High Pass Filter)는 고주파 성분은 통과시키고 저주파 성분은 차단하는 필터이다. 의료영상에서 고주파 성분은 장기(organ)의 윤곽이나 경계선 부분이 고주파 성분에 해당된다. 따라서 고역 통과 필터는 경계선 검출에도 쓰이지만 고역 강조를 위해서도 이용된다. 제시한 알고리즘으로 분석을 하여 혈관조영상의 화질을 개선할 수 있었다. 목적부위의 표현이 확연하게 두드러짐을 알 수 있었다. 제안된 방안을 이용한다면 DSA 시스템의 화질을 개선하는 소프트웨어에 적용하여 오진을 줄여주고 시술의 정확도를 더욱 높여 줄 수 있을 것이라 사료된다.
본 논문에서는 프랙탈 부호화시 변환식의 계수를 찾는 과정에서 블럭의 탐색영역을 줄이기 위해 탐색영역인 도메인 블럭의 특성을 화소의 밝기의 평균에 의한 클래스와 분산에 의한 클래스로 분류하여 리스트를 구성한 후 레인지 블럭과 같은 클래스를 가지는 도메인 블럭만 검색하도록 하면서 도메인 블록 탐색시 1차 허용 오차 한계값을 제어하여 리스트 탐색시 RMS값에 일정 허용오차 이내의 값을 가지면 리스트를 끝까지 탐색하지 않고 변환값을 결정하도록 하여 부호화 시간을 향상시켰다. 또한 퀴드트리 분할법으로 레인지 블럭의 크기를 가변시켜 변환(wi)의 수를 줄임으로서 압축효율을 높이고 도메인 레인지 블럭의 크기에 따라 탐색 영역의 탐색 밀도와 허용오차를 변화시켰을 때 화질 개선여부를 검토하였다. 제안된 방법으로 부호화한 결과 부호화 시간은 허용오차의 범위에 따라 향상되며 압축효과는 높아졌고 PSNR값은 다소 떨어졌으나 거의 무시할 수 있을 정도의 변화가 있었다.
경부 CT검사 시 선속경화인공물(Beam Hardening Artifact)에 의해 제 6번 7번 경추 및 추간판 등의 질환 및 그밖 에 해부학적 구조를 정확히 구분하기에 어려움이 있다. 경부 CT검사를 시행할 경우 자세의 변화방법을 적용한 견관절 의 방향과 위치에 따른 영상평가 및 커널값의 변화에 따른 영상평가를 통하여 선속경화 인공물의 원인을 알아보고 가 장 적절한 검사자세 및 Kernel값을 실험을 통하여 알아보고자 하였다. 경부 CT검사를 위해 내원한 환자 30명(2010년 7월1일 ~ 2010년 12월31일까지 내원한 환자)을 대상으로 Somatom Sensation 16(Siemens, Enlarge, Germany)장비 를 이용하였고, workstation은 AW 4.4 version(GE, USA)을 이용하였다.. 환자 자세는 견관절의 방향과 위치에 따라 세가지 자세로 변화를 주었으며 양쪽 팔을 편안하게 위치시킨 바로 누운 자세(group N), 왼쪽 팔을 거상 시킨 자세 (group S) 그리고 양손을 외 선위(eversion)시켜 최대한 아래로 내리는 자세(group P)로 견관절의 방향을 변화를 주 어 스캔을 시행하였고, 두 번째로 영상 재구성 방법을 이용하여 스캔 데이터에 커널값을 B10(very smooth), B20(smooth), B30(medium smooth), B40(medium), B50(medium sharp), B60(sharp), B70(very sharp)로 변화를 주어 재구성 하였다. 검사자세의 변화와 Kernel값의 변화를 주어 얻어진 영상 데이터를 이용하여 각 각의 노이즈 값 측정과 영상평가를 통하여 분석해보았다. 경부 CT검사 시 검사자세는 양손을 외선위(eversion)시켜 최대한 아래로 내 리는 자세(group P)로 하며, 커널 값은 B40(medium)또는 B50(medium sharp)으로 재구성할 경우 가장 적절한 자세 와 커널값으로 분석되어 임상에 적용 시 매우 유용할 것으로 사료된다.