산소 분리를 위한 세라믹 중공사막을 상전이 방적기술을 통해 제조하였다. 초기 BSCF 선구물질은 고상반응법을 이용하여 합성한 상용 분말이며, 고분자 용액에 분산시킨 후 이중관형 노즐을 통해 사출하였다. 사출된 분리막은 상전이 과정을 거친 후 건조시켰으며 중공사막의 한쪽 끝을 밀봉하였다. 한쪽 끝이 막힌 중공사막의 표면에 dip coating 방법으로 LSCF를 코팅하였으며 1100 ℃에서 소결하여 치밀성을 갖는 한쪽 끝이 막힌 LSCF coated BSCF 중공사막을 제조하였다. 분리막의 공급측은 대기 중 공기를 사용하였으며 투과측은 진공상태를 유지하였다. 투과된 기체의 유량 및 산소의 농도를 측정하였으며 장기투과 실험과 EDS 분석을 통해 분리막의 안정성 평가를 진행하였다.
산소 분리를 위한 세라믹 중공사막을 상전이 방적기술을 통해 제조하였다. Ba0.5Sr0.5Co0.8Fe0.2O3-δ 선구 물질을 고분자 용액에 분산시킨 후 이중관형 노즐을 통해 사출한 후 상전이, 건조한 후 분리막의 한쪽 끝을 밀봉하였다. La0.6Sr0.4Ti0.3Fe0.7O3-δ 코팅 층은 dip coating 방법으로 제조되었으며 최종적으로 고온에서 소결하여 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 one end-closed type Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사막을 제조하였다. 산소투과실험은 대기 중 공기를 사용하였으며 진공펌프를 연결하여 투과된 산소 유량 및 순도를 측정하였다.
다공성 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 관형 분리막은 압출성형 및 dip coating 방법으로 제조 되었다. 코팅된 관형 분리막의 특성은 X-선 회절분석기(XRD)와 전자 주사 현미경(SEM)을 이용하여 분석하였으며, 분석결과 2mum의 다공성 코팅 층을 갖는 페롭스카이트 구조임을 알 수 있었다. 산소투과량 분석은 750~950℃ 범위에서 공급측과 투과 측을 대기 중 공기와 진공으로 하여 수행되었다. 다공성의 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 관형 분리막의 산소투과량은 950℃에서 3.2mL/min·cm2로 코팅되지 않은 분리막보다 높게 나타났으며, 11일 동안의 장기 안정성 실험결과 코팅 층에 의해 안정성이 증가됨을 알 수 있었다.
흘란다이트 터널 구조내의 A자리 양이온인 Ba2+ 이온을 K+ 이온이 치환하면서 결정의 구조에 어떠한 변화가 있는지 알아보기 위해 K-Ba 전구간 완전고용체로 치환된 7개의 합성 흘란다이트형 광물(K2x Ba1 -x/Cr2Ti6 O16 , x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0)에 대하여 X선 회절분석과 리트벨트 구조분석법을 실시하였다. 리트벨트 계산 결과, 구조의 정밀도를 나타내는 R 지수값을 보면 Rexp에 대한 Rwp 값(Rwp /Rexp )은 15.77%/20.90%~14.74%/l9.37%의 범위를 보여주며, RB 값은 6.45~8.97%, S (GofF)값은 1.45~l.63으로 각각 계산되었다. 합성 홀란다이트는 K-Ba 전구간에서 Ba의 함량에 관계없이 모두 공간군 14/m을 가지며, 단위포의 크기는 a=10.1194(2) ~ 10.0599(2)a, c=2.9572(6)~2.9512(7)a, V=302.75~298.66a3의 범위를 보여주며, K 함량이 50% 이상에서는 금홍석이 부산물로 합성되었다. 그 결과 A자리의 Ba와 K의 치환관계에서는 비록 단위포의 크기에 일정한 변화를 보여주었으나 구조적 변이에 영향을 주기에는 충분치 않은 것으로 밝혀졌다. 따라서 정방정계에서 대칭성이 낮은 단사정계로의 구조적 변이는 A자리에 대한 K-Ba 치환보다는 다른 양이온의 치환이나 B자리의 치환 등 다른 요인에 의할 것으로 생각된다.다.