In this study, the soil-structure interaction impact of a 3-hinge Concrete Modular Underground Arch (CMUA) is simulated using Abaqus/CAE. The results indicate that Abaqus/CAE is an effective tool for seismic simulation of the CMUA. Besides, the structural damage under the earthquake impact can occur locally on lining structure or its surrounding at the soils that is influenced significantly by the interaction and contact between structural parts as well as linkages of segments.
There is a limit to the representation of finite element analysis modeling of the pure shear of corrugated plate. However, if the shear force is applied to the corrugated plate, the set of appropriate boundary can be obtained to the nearest theory value. In this study compared Shear buckling strength about each boundary condition with the plate shear theory. And then each boundary condition applied to sinusoidal corrugated plate, evaluate convergence of the minimum shear buckling strength of each boundary condition and shear buckling flow was observed through shear buckling mode shape.