Background: To restore the trunk function of stroke patients who tend to experience trunk weakness, a single exercise intervention is usually applied. However, problems with the trunk remain even after such an intervention. To overcome this challenge, combining other intervention methods with an exercise is suggested during training. Objectives: To investigate the effect of breathing based abdominal draw-in technique on the thickness of the transversus abdominis muscle and trunk control in stroke patients. Design: Randomized controlled study. Methods: After designating a group that will perform the abdominal draw-in technique as Experimental Group I and another group that will perform the breathing based abdominal draw-in technique as Experimental Group II, the thickness of the transversus abdominis muscle and the trunk impairment scale (TIS) of the subjects were measured as pre-tests before the interventions and as post-tests after the six week intervention period. Results: In the within group comparison, there was a significant change in the thickness of the transversus abdominis muscle for both groups while the subjects performed the abdominal draw-in technique; a significant change was also noted in their TIS (P<.05) (P<.01). However, in the inter-group comparison, a significant difference was found only in the TIS between the two groups (P<.05). Conclusion: After the application of the breathing based abdominal draw-in technique, an efficient contractile response was observed even in the muscles around the abdomen of the subjects, which indicates that this technique is an intervention method that can more effectively improve trunk control.
Background: Improvement of the lumbo-pelvic stability can reduce the compensatory action of the erector spinae (ES) during prone hip extension (PHE). Furthermore, the application of abdominal drawing-in (ADI) maneuver increases the action of gluteus maximus (GM) and decreases the action of ES during PHE by improving the lumbo-pelvic stability. However, the post-ADI exercise effects on PHE, not the real-time application of ADI maneuver, has not been studied.
Objects: This study is aimed at investigating the post-ADI exercise effects on the muscle activities of GM and ES during PHE.
Methods: A total of 24 female adults participated in the study, and they were divided into two groups: Those with normal abdominal muscles (n1=12) and those with weak abdominal muscles (WA) (n2=12). Before the intervention, the subjects’ GM and ES muscle activities during PHE were measured. Subsequently, the two groups were asked to perform the ADI exercise for 10 minutes. After the ADI exercise, the GM and ES activities were equally measured during PHE.
Results: The comparison result of the ES muscle activities before intervention shows a significant difference between the two groups (p<.05); the WA group showed higher muscle activities than the normal group. For the within-group comparison, the muscle activities of the ES in the WA group significantly decreased after the ADI exercise (p<.05). For the GM muscle activity, no significant difference was observed in all comparisons (p>.05). For the changes in muscle activities before and after the ADI exercise, a significant difference exists between the two groups only for the changes in ES activities (p<.05); WA group exhibits higher changes than the normal group. By contrast, no significant difference exists between the two groups for the changes in GM activities (p>.05).
Conclusion: After the ADI exercise, the compensatory action of ES in the female adults with WC is implied to decrease during PHE.
Background: Improvement of lumbo-pelvic stability can reduce the compensatory action of the quadratus lumborum (QL) and selectively strengthen the gluteus medius (GM) during side-lying hip abduction (SHA). There are abdominal draw-in maneuver (ADIM) and abdominal bracing (AB) as active ways, and pelvic compression belt (PCB) as a passive way to increase of lumbo-pelvic stability. It is necessary to compare how these stabilization methods affect the selective strengthening of the GM. Objects: To investigate the effects of ADIM, AB, and PCB during SHA on the electromyography (EMG) activity of the GM, QL, external oblique (EO) and internal oblique (IO), and the GM/QL EMG activity ratio. Methods: A total of 20 healthy male adults participated in the study. The subjects performed three conditions in side-lying in random order: SHA with ADIM (SHA-ADIM), SHA with AB (SHA-AB), and SHA with PCB (SHA-PCB). To compare the differences among the three conditions, the EMG activities of the GM, QL, EO and IO, and GM/QL EMG activity ratio were analyzed using one-way repeated ANOVA. Results: The EMG activity of the QL was significantly higher in SHA-AB than in SHA-ADIM and SHA-PCB. The GM/QL activity ratio was significantly higher in SHA-PCB than in SHA-ADIM and SHA-AB. In addition, the figure for SHA-ADIM was significantly higher than that for SHA-AB. In the case of the EO, the figure for SHA-AB was significantly higher than corresponding values for the other two conditions. The figure for SHA-ADIM was significantly higher than that for SHA-PCB. The EMG activity of the IO was significantly higher in SHA-AH than in SHA-PCB. Conclusion: It can be suggested that wearing the PCB can more selectively strengthen the GM than to perform ADIM and AB during SHA. In addition, the ADIM can be recommended when there is a need to strengthen abdominal muscles during SHA.
Background: Scapular downward rotation syndrome (SDRS) is a common scapular alignment impairment that causes insufficient upward rotation and muscle imbalance, shortened levator scapulae (LS) and rhomboid, and lengthened serratus anterior (SA) and trapezius. A modified shrug exercise (MSE), performing a shrug exercise with the shoulders at 150° abduction, is known as an effective exercise to increase scapular stabilizer muscle activation. Previous studies revealed that scapular exercise are more effective when combined with trunk stabilization exercises in decreasing scapular winging and increasing scapular stabilizer muscle activation. Objects: The purpose of our study was to clarify the effect of MSE with or without trunk stabilization exercises in subjects with SDRS. Methods: Eighteen volunteer subjects (male=10, female=8) with SDRS were recruited for this experiment. All subjects performed MSE under 3 different conditions: (1) MSE, (2) MSE with an abdominal draw-in maneuver (ADIM), and (3) MSE with an abdominal expansion maneuver (AEM). The muscle thickness of the lower trapezius (LT) and the SA were measured using an ultrasonography in each condition. Electromyography (EMG) data were collected from the LT, LS, SA, and upper trapezius (UT) muscle activities. Data were statistically analysed using one-way repeated analysis of variance at a significance level of .05. Results: The muscle thickness of the LT and the SA were the significant different in the MSE, MSE with ADIM (MSE+ADIM) and MSE with AEM (MSE+AEM) conditions (p<.05) In both LT and SA, the order of thick muscle thickness was MSE+AEM, MSE+ADIM, and MSE alone. No significant differences were found in the EMG activities of the SA, UT, LS, and LT in all condition. Conclusion: In conclusion, MSE is more beneficial to people with SDRS when combined with trunk stabilization exercises by increased thickness of scapular stabilizer muscles.
This study aimed to investigate the effect of the abdominal drawing-in maneuver (ADIM) and abdominal expansion maneuver (AEM) on trunk stabilization, as well as trunk muscle activities and differences in quadruple visual analogue scale, Korean Oswestry Disability Index, and Fear Avoidance Beliefs Questionnaire scores, in patients with chronic low back pain and lumbar spine instability. To increase intra-abdominal pressure during the trunk stabilization exercise, the technique of pushing the abdomen out using diaphragmatic abdominal breathing suggested by Pavel Koral was used, which we termed the AEM. Fifty patients who tested positive on more than three of the five lumbar spine instability tests were separated from 138 patients with chronic low back pain of these patients, 16 were placed in the control group (trunk stabilization exercise), 17 were placed in the ADIM group (trunk stabilization exercise with ADIM), and 17 were placed in the AEM group (trunk stabilization exercise with AEM). Each group participated in the study for 30 minutes three times weekly for 4 weeks. Surface electromyography was used to measure the trunk muscle activities during the kneeling forward and supine bridging positions, and one-way repeated analysis of variance was used to determine the statistical significance of the trunk muscle activities in the rectus abdominis, internal oblique (IO), erector spinae, and multifidus (MF) muscles. The ADIM and AEM groups showed relatively larger improvements in psychosocial and functional disability level than control group. There were significant changes among the three groups, those from the measured values of the AEM group was significantly higher than the other two groups in changes in IO and MF trunk muscle activities (p<05). This finding demonstrates that trunk stabilization exercises with AEM is more effective than ADIM for increasing trunk deep muscle activity of chronic low back pain patients with lumbar spine instability.
This study was conducted in order to examine whether abdominal draw-in maneuver (ADIM) with isometric shoulder flexion, extension, adduction, and abduction selectively contracted deep abdominal muscles. This study's subjects were 13 males 17 females. In order to evaluate the comparison of effects of ADIM and ADIM with isometric shoulder flexion, extension, adduction and abduction, measurements were made on transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) using a real-time ultrasonic diagnostic imaging system. Each position was repetitively measured three times with a real-time ultrasonic diagnostic imaging system and their mean values were used for analysis. The ADIM with isometric shoulder flexion, extension, adduction and abduction significantly increased the thickness of TrA relative to the ADIM only (p<.05). The ADIM with isometric shoulder abduction significantly increased the thickness of IO compared to the ADIM only (p<.05). The ADIM with isometric shoulder extension and abduction significantly decreased the thickness of EO compared to the ADIM only and the ADIM with isometric shoulder extension significantly decreased the thickness of EO relative to the ADIM with isometric shoulder adduction (p<.05). ADIM with isometric shoulder abduction is an effective method to selectively strengthen deep abdominal muscles and therefore may be employed as an intervention for trunk stabilization.