전국 태양광 발전시설의 효율적인 보급을 위해 9개 도 지역별 기상 데이터를 활용한 DEA(Data Envelopment Analysis) 효율성 분석 결과를 도출하고자 한다. 국내 태양광 중심으로 설비보급과 발전 비중이 빠른 속도로 증가 중이며 재생에너지 전력 생산의 효율적 개편을 위해 기후변화에 따른 기상 예측 정보를 활용하고 있다. 본 연구는 신재생 에너지 정책의 시사점이 높았던 2020∼2022년의 기상청 데이터와 과거 30년 평균(1981년 ∼2012년) 데이터를 기준으로 일사량 변화에 의한 발전량 예측 모델을 시뮬레이션했다. 특히 기상 데이터와 실제 발전량 사이 관계를 분석하여 투입 산출 변수와 관련 있는 연구모형의 효율성을 파악하였다. 태양광 발전시설의 안정적인 운영과 관리를 통해 최상의 발전시설 상태를 유지하고, 전력량을 끌어올리기 위해 전문적이고 차별화된 운영관리 (O&M) 서비스 제공이 필요하다.
This study tries to reveal abnormal trends in climate change from 60 stations in Korea during 1981-2010 by comparisons to the standard station, Chupungnyeong station. Trends in climate change from station with the abnormalities, and their implication and causes are also discussed. Although Wando, Wonju, Mungyeong and Mokpo stations show the most abnormalities, normal trends in climate change from some climate data are also found from Mokpo station. On the other hand, some climate data from Suwon, Jeonju, Jinju, Icheon and Geumsan stations indicate the most normalities. It should be noted that variabilities of climate data are largely different, indicating that clear trends in climate change may not be extracted. The fact that some stations with the abnormalities from some climate data also show the normalities should be also noted. This study suggests that most stations with the most abnormalities may be relevant to relocation of station.
Abnormal change in Gyeongpo beach shoreline in June of 2012 was illustrated using DGPS (Differential Global Positioning System, resolution < 0.6m) observation and drift experiment. Abrupt change in the shoreline was occurred in the latter part of June, 2012, this change was compared with that in June from 2009 to 2011. In the northern part of the beach, sand accumulated and it made beach extension and movement of the shoreline towards sea compared with that in June from 2009 to 2011. While on the other, in the southern part, the beach was eroded and it formed a steep slope around the southernmost of the beach. The shoreline in the southern part of the beach was shifted more towards land than that in the past. Change in the position of shoreline was higher in the northernmost and southernmost of the beach compared with those in the other parts. Drift in the southern part of the beach moved faster along the beach than that in the northern part of it.