검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mango fruit seed shells were used as starting materials to produce activated carbons for the capture of acetone, a typical volatile organic compound (VOC), from gaseous streams. This fruit waste presents high volatiles and low ashes contents, as expected for the lignocelulosic materials commonly used for the preparation of activated carbons. The starting material was hydrothermally treated at 180 or 250 °C for 5 h and the obtained hydrochars were activated with KOH solutions. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy and textural analysis by physisorption. The adsorption capacity and adsorption cycles were investigated by TG. The hydrochars presented spherical morphology and the activated carbons derived from them presented heterogeneous micropore structures allowing to high capacity of acetone vapor removal, namely 472 mg/g, at 30 °C and 363 mg/g, at 50 °C. The results indicate that the adsorption capacity of the activated carbons is directly related to their Dubinin-Astakhov micropore surface areas and microporous volumes determined by NLDFT. The adsorption of acetone vapor showed a pseudo-first order kinetics and both external and intraparticle transport contributed for the overall process. Highly efficient and stable acetone vapor removal was observed over the activated carbons after five cycles.
        4,800원
        2.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with TiO2-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be 628 g/m3·d for single toluene, 499 g/m3·d for toluene mixed with benzene, 318 g/m3·d for toluene mixed with acetone, and 513 g/m3·d for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.
        3.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        The purpose of this work is to study the adsorption and desorption characteristics of acetone vapor and toluene vapor from adsorption tower in the VOCs recovery device. The six kinds of activated carbon with different pore structures were used and the adsorption and desorption characteristics were compared according to pore structure, desorption temperature, and adsorption method, respectively. Adsorption capacity of acetone vapor and toluene vapor by batch method was higher than that by dynamic method. Especially, activated carbon with medium-sized or large pores had more difference in adsorption capacity according to adsorption methods as a result of gradually condensation of vapors on relatively mesopore and large pores. Activated carbons with relatively large pores and relatively small saturated adsorption capacity had excellent desorption ability.