A novel experimental set-up allowing quantitative determination of the adsorption capacity of gas molecules on a surface under high-vacuum conditions is introduced. Using this system, the toluene adsorption capacities of various carbon nanostructures were determined. We found that for a give surface area, the adsorption capacities of toluene of multi-walled carbon nanotubes and nanodiamonds were higher than that of activated carbon, which is widely used as an adsorbent of volatile organic compounds. The adsorption of toluene was reversible at room temperature.
Zeolitic material, Z-Y3, was synthesized from coal fly ash (CFA) under low-alkaline conditions (NaOH/CFA ratio = 0.3 and NaOH solution concentrations of 0.0, 0.5, and 1.0 M) using a fusion/hydrothermal method. The adsorption capacities of the fabricated Z-Y3 samples for Cs and Sr ions and the desorption capacity of Na ions were evaluated. The XRD patterns of the Z-Y3 sample fabricated using a 1.0 M NaOH solution (Z-Y3 (1.0 M)) indicated the successful synthesis of a zeolitic material, because the diffraction peaks of Z-Y3 coincided with those of the Na-A zeolite in the 2θ range of 7.18-34.18. Moreover, the SEM images revealed that morphology of the Z-Y3 (1.0 M) sample, which presented zeolitic materials characteristics, consisted of sharp-edged cubes. The adsorption isotherms of Cs and Sr ions on all the fabricated Z-Y3 samples were described using the Langmuir model, and the maximum adsorption capacities of Cs and Sr were calculated to be 0.14-0.94 mmol/g and 0.19-0.78 mmol/g, respectively. The desorption of Na ions from the Cs and Sr ions adsorbed Z-Y3 samples followed the Langmuir desorption model. The maximum desorption capacities of Na ions from the Cs and Sr ions adsorbed Z-Y3 (1.0 M) samples were 1.28 and 1.49 mmol/g, respectively.
Adsorption experiments of binary mixed gases composed of acetone/methylethylketone (MEK), MEK/benzene, MEK/toluene, and benzene/toluene were carried out on activated carbon fixed-bed. The variations of equilibrium adsorption capacity according to type and fraction of binary gas were investigated. In case of binary gases composed of acetone/MEK and benzene/toluene, equilibrium adsorption capacities of MEK and toluene were increased according to the increase of fraction of MEK and toluene, but equilibrium adsorption capacities of acetone and benzene were decreased. In case of binary gases composed of MEK/benzene and MEK/toluene, equilibrium adsorption capacities of benzene and toluene were increased according to the increase of fraction of benzene and toluene, but equilibrium adsorption capacities of MEK was decreased.