Noise is defined as ‘unwanted sound’ or ‘undesired sound’. Recently, the aviation industry has been rapidly developing through convergence with cutting-edge technologies such as UAM. Accordingly, it is expected that new aviation industry models will continue to be created in Korea. In addition, it is expected that aircraft noise will be raised as a new social problem. The characteristic of aircraft noise is that it has a wide transmission range. Therefore, the area affected by aircraft noise is extensive, and the damage area varies depending on the flight path and flight environment. Additionally, it tends to occur continuously in certain areas. This study is an extension of the previous studies Study on noise measurement and analysis of C172 aircraft at Muan Airport and Study on noise measurement and analysis of SR20, and investigated the noise characteristics of various piston engine trainer aircraft operated in Korea. We want to measure and analyze noise.
The main problem of airport noise is the impact of aircraft noise on the residents around the airport. In order to investigate the noise situation of a certain airport in South Korea, this article selects Muan Airport as the research project, selects five measurement points near the airport, takes aircraft takeoff as an example, measures the maximum noise level of each measurement point during each take off, and uses the American Airport Noise Prediction Software (AEDT 3C) to predict the noise of a single aircraft during take off, Calculate the contour area and sound exposure level data for four aircraft models. The results indicate that the average maximum noise level error between the measurement results and the simulation results is within 2dB, and the maximum noise level ranges from 65.1 to 88.1 decibels with the measurement range.