검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seismically deficient reinforced concrete(RC) structures experience reduced structural capacity and lateral resistance due to the increased axial loads resulting from green retrofitting and vertical extensions. To ensure structural safety, traditional performance assessment methods are commonly employed. However, the complexity of these evaluations can act as a barrier to the application of green retrofitting and vertical extensions. This study proposes a methodology for rapidly calculating the allowable axial force range of RC buildings by leveraging simplified structural details and seismic wave information. The methodology includes three machine-learning-based models: (1) predicting column failure modes, (2) assessing seismic performance under current conditions, and (3) evaluating seismic performance under amplified mass conditions. A machine learning model was specifically developed to predict the seismic performance of an RC moment frame building using structural details, gravity loads, failure modes, and seismic wave data as input variables, with dynamic response-based seismic performance evaluations as output data. Classifiers developed using various machine learning methodologies were compared, and two optimal ensemble models were selected to effectively predict seismic performance for both current and increased mass scenarios.
        4,500원
        2.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.
        4,000원