검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        5.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.
        4,000원
        6.
        2016.11 구독 인증기관·개인회원 무료
        The water uptake, ionic conductivity, vanadium (VO2+) permeability and stability of polysulfone (PSF) based AEMs in alkaline media and in strongly oxidizing solutions were assessed. The highest ion conductivity was obtained with PSF-trimethylammonium (TMA)+. PSF-TMA+ also had better alkaline stability in comparison to PSF-AEM with different bases. PSF-TMA+ was demonstrated to show fuel cell performance. PSF-TMA+ demonstrated a 40-fold reduction in vanadium (VO2+) permeability when compared to Nafion® membrane. Comprehensive 2D NMR studies verified that PSF-TMA+ remained chemically stable even after exposure to a 1.5 M vanadium(V) solution for 90 days. Excellent energy efficiencies (85%) were attained and sustained over several charge–discharge cycles for a vanadium redox flow battery prepared using the PSF-TMA+ separator.