Effective mixing of different-sized aggregates in mobile asphalt plant dryers is crucial for ensuring high-quality, consistent asphalt production. This study explores the application of spatial analysis techniques, particularly the Discrete Element Method (DEM), to understand and optimize the mixing process of aggregates in drum dryers. The research emphasizes the importance of proper mixing to achieve uniform moisture removal and heating across various aggregate sizes. Larger aggregates heat more slowly, while finer particles risk overheating or being carried away by air currents, necessitating careful management of the mixing process. Using LIGGGHTS, an open-source simulation framework, we conducted DEM simulations to analyze the spatial distribution and behavior of aggregates within a 3D model of a drum dryer. The study considered multiple factors affecting mixing efficiency, including drum inclination, rotational speed, and aggregate feeding frequency. Results indicate that the rotational speed of the drum dryer has the most significant impact on mixing effectiveness. The DEM simulations provided valuable insights into particle movement, heat transfer, and potential segregation issues within the dryer. Further investigations into additional factors that may influence aggregate mixing in drum dryers is recommended, paving the way for improved efficiency and quality in asphalt manufacturing.
PURPOSES : Water content causes a big problem in terms of the quality and economy of the asphalt plant. However, the current guidelines do not suggest specific rules other than roof installation. Therefore, this study proposes a water content management index, QM, and management flow chart by analyzing the water content variability of the stockpile and cold bin aggregates and suggests a guideline rule for improving water content management, including stockpile floor inclination via analysis of slope stability.
METHODS : To analyze the variability of water content in the asphalt plant, stockpile and cold bin aggregate samples were collected from the asphalt plant over two years and a water content lab test was conducted via sieve analysis. In addition, domestic and foreign water content management guidelines were compared and the economic effect was analyzed according to water content DB analysis for the importance of water content management. The influence factors of water content variability were also analyzed. To apply the 3σ quality management technique for the development of the water content management index, QM, a water content management limit and procedure was proposed through the asphalt mix design.
RESULTS : As a result of analyzing the water content variability, it was found that the water content of the stockpile fine aggregates should be intensively managed immediately after the rainy season and the QM index developed in this study should be 1 or more. In addition, as a result of the stability analysis according to the change in the stockpile floor inclination, it was found that the safety factor was lowered according to the slope angle and floor inclination.
CONCLUSIONS : In the past, a passive method of preventing rainwater with a roof was used for water content management and ambiguous qualitative rules were suggested in the guidelines. In this study, a procedure for managing the water content of asphalt plant aggregates using the QM index, a quantitative stock floor inclination chart, and rules for improving water content management were presented for the quality control of asphalt plant aggregates.