검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 1979년부터 1999년까지 21년 동안에 한반도 겨울철 한파와 관련된 대기 순환 및 열원(Q1)의 분포 특성을 조사하였다. 한파 발생 빈도는 1년간 약 1개로 나타났으며, 1989년을 중심으로 전반기에 전체의 60%가 발생하였다. 한파 발생 동안 하층의 대기 순환 패턴은 평년에 비해 서고동저형의 기압 패턴이 더 뚜렷하며, 상층에서도 한반도에 기압골의 영향이 더 강하게 나타난다. 한파가 발생하는 동안에 한반도 부근의 기온 하강 패턴은 바이칼호 부근의 기온 패턴과 반대로 나타나며, 기온의 연직 구조에서도 400 hPa을 기준으로 하층과 상층의 기온 편차는 반대로 나타난다. 열원에 대한 분석은 한파 발생 시 한랭 이류에 의한 냉각은 하강 운동에 의한 단열 승온에 의해 균형을 이룬다는 것을 보여주는데, 이것은 한랭 핵의 이동이 열흡수원의 이동 경로와 연관되어 있음을 나타낸다. 따라서 한파의 유지 기작을 이해하고 한파를 예측하기 위해서는 열원 그리고 열흡수원의 이동 기작이 밝혀져야 할 것이다.
        4,500원
        2.
        2011.07 KCI 등재 서비스 종료(열람 제한)
        This research was done to clarify the cooling effect of water particles generated from a fountain. This effect is a one way to control the heat island effect of big cities. The result of this research was drawn by setting the jets of water in a certain height, and then studying the diffusion of water particles, which is affected by the size of the particles and the wind speed, and the cooling effect caused by the diffusion. 1) When a diameter of a water drop was 500 ㎛ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 75 to 190m, and the water vapor spread over 175 to 440 m. As a result, there was more than 0.5℃ of cooling effect on the temperature in the atmosphere 130 to 330m around the water fountain. 2) When a diameter of a water drop was 750 ㎛ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 65 to 150 m, and the water vapor spread over 160 to 405 m. Moreover, there was more than 0.5℃ of cooling effect on the temperature in the atmosphere 110 to 275 m around the water fountain. 3) After studying on the relationship between the diameter of water drop and the wind speed, and the diffusion of water particles and the range of the atmosphere that was cooled, a result could be drawn from the research that the smaller the diameter of the water vapor gets and the faster the wind speed becomes, the wider the water particles diffuse and the cooler the atmosphere around the fountain becomes. 4) This research further extrapolates that when the ordinary water(tap water, water from river and stream) is used in a fountain, the cooling effect of the air near the fountain can be approached similarly. If the seawater is used in a fountain, there is to be more to concern not only on cooling effect on the air, but also on other effects on surrounding environment generated by the salt in seawater.
        3.
        1996.12 KCI 등재 서비스 종료(열람 제한)
        An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of T_f(foliage temperature), T_g(ground temperature), and q_g(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soll(sand and peat), the change for shielding factor, and the change for a kind of vegetation.