자율운항선박이 부두 근처에 도착하여 예선이나 도선사의 도움 없이 선박을 자동으로 접·이안하기 위해서는 부두를 인식하고 주어진 외력 조건에서 부두까지 정해진 접안속도로 접안하기 위한 스러스터 출력과 출력각을 산정해야 한다. 이에 본 연구에서는 선박이 접안 중에 작용하는 외력과 모멘트를 분석하고 자동접안을 위한 스러스터의 출력 계산과 자동접안 프로그램 개발을 위한 기본개념을 설 계하였다. 선박이 접안 중 바람에 의해 선체에 작용하는 풍압력은 풍압면적을 기초로 선형과 풍향각에 따라 계산하였으며, 선체에 작용하 는 유압력은 조류에 의한 유압력과 접안속도에 따른 유압력을 분리하여 계산하였다. 그리고 선박의 횡방향 힘에 따라 선박을 회전시키는 회두모멘트를 계산하였다. 접안 중 선박에 작용하는 힘과 회두모멘트를 고려하여 부두와 평행하게 접안하기 위한 스러스터 출력과 출력 각을 계산할 수 있는 이론식을 제시하고 다른 변수들로 인한 회두를 PID 제어기로 제어하였다. 또한, 이론식에 필요한 입력요소를 분석하 여 프로그램 개발을 위한 기본개념을 제시하였다.
선박의 접안운동을 자동화하기 위하여 인공신경망(Artificial Neural Network, 이하 ANN)에 의한 제어를 수행하였다. ANN은 시스템의 비선형성이 표현 가능하므로 접안운동과 같은 비선형성이 강한 조종운동에 적합하다. 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 다층 인식자(Multi-layer perceptron)를 사용하였고, 교사 데이터(Teaching data)와 역전파(Back-Propagation) 알고리즘을 사용하여 신경망의 출력값과 목표 출력값 사이의 오차가 최소가 되도록 신경망 학습을 수행하였다. 접안 시 저속조종 수학모델을 사용하여 접안 시뮬레이션을 수행하였으며, ANN의 입력층 성분(unit)이 8개인 구조와 6개인 구조의 접안 제어를 비교하였다. 시뮬레이션 결과, 두 ANN에 의하여 접안 경로 선택에 차이가 나타났으나 접안 조건은 모두 만족하였다.
In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Secondly, computer simulations of automatic ship berthing are carried out in Pusan bay to verify the proposed controller under the influence of wind disturbance and measurement noise. The results of simulation show good performance of the developed berthing control system.
Along with the rapid growth of shipping and transportation , the size of a ship larger and larger. Low speed maneuverabililty of a full ship has been received a great deal of attention concerting about the navigation safety, especially in the harbour area of waterway. And, the iperation of the full ship in harbour area is one fo tehmost difficult technique. Usually highly experienced experts can make a suitable decision considering various propeller ,rudder actions and environmental conditions. The Artificial Neural Network is applied to the automatic berthing control of a ship. The teaching data are made by the berthing simulation of a ship on the computer. And, the layer neural network is used and the 'Error Back-Propagation Algorithm' is used to teach the neural network. Finally, it is shown that the berthing control is successfully done by the established neural network.