This paper presents a robust lane detection algorithm based on RGB color and shape information during autonomous car control in realtime. For realtime control, our algorithm increases its processing speed by employing minimal elements. Our algorithm extracts yellow and white pixels by computing the average and standard deviation values calculated from specific regions, and constructs elements based on the extracted pixels. By clustering elements, our algorithm finds the yellow center and white stop lanes on the road. Our algorithm is insensitive to the environment change and its processing speed is realtime-executable. Experimental results demonstrate the feasibility of our algorithm.
This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.