The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/CeO2-ZrO2, Ni/Al2O3-MgO and Ni-Ru/Al2O3-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio(O2/CH4, H2O/CH4). The O2/CH4 and H2O/CH4 ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing O2/CH4 ratio. Among the catalysts used in the experiment, the Ni-Ru/Al2O3-MgO catalyst showed the highest activity. The 60% of CH4 conversion was obtained, and th e reactor temperature was maintained 600℃ at the condition of GHSV=10000h-1 and feed ratio S/C/O=0.5/1/0.5.
Development and performance evaluation of the hydrogen generator by autothermal reforming process for emergency PEM fuel cell using methanol from process waste were carried out. Supply of gaseous hydrogen has been a technical barrier for its wide application. As a result, conventional reformer has either a separate heat source such as a catalytic combustor or a parallel process in the same reactor to generate heat. The later device is called ATR (Autothermal reforming). Typical product gas of ATR still contains a large amount of carbon monoxide that poisons electro-catalyst of the MEA. In the present study, we used the decomposition of hydrogen peroxide as a parallel exothermic reaction in the same reactor as the reformer. The decomposition of hydrogen peroxide releases water vapor and gaseous oxygen with enormous heat. The heat sustains the reforming reaction and the oxygen is used to recombine the carbon monoxide by oxidation. By parametric study, at the condition of 200oC and the rate of methanol to 40% of hydrogen peroxide is 4 to 1, the Carbon monoxide contents are reduced by less than 800 ppm. Using the present concept we could reduce the concentration of carbon monoxide in the product gas of the reformer by more than 80%. At that carbon monoxide contents, we can be possible to load the methanol-hydrogen peroxide ATR system without any devices.