Caffeic acid is a kind of phytochemicals occurred in coffee, which is worked as a carcinogenesis restrainer and antioxidants on the human body. In this study, as one type of caffeic acid derivatives, methoxypolyethylene glycol caffeate(MPC) was synthesized by the esterification between caffeic acid and methoxypolyethylene glycol with N,N'-dicyclohexyl carbodiimide, 4-dimethylamino pyridine. The synthesized product was confirmed by using FT-IR and 1H-NMR, thin-layer chromatography. And these compound was investigated as antioxidant, Tyrosinase hindrance and skin moisturizers. In the free radical scavenging study, antioxidant effect of MPC was averagely high than the red ginseng extract that be used as a natural antioxidants. The result of Tyrosinase anti-activity test was better than embryo bud of rice extract at low concentration. At the iNOS anti-activity tested by using Raw 264.7 cell, and confirmed anti-inflammatory function. For the MPC handled with sodium lauryl sulfate, was tested for the skin moisture content and skin moisture loss.
This study was carried to investigate the antidiabetic metabolism effect of water extract Cordyceps Militalis(C.M.) in Streptozotocin(STZ) induced diabetic rats. Diabetes were induced by intravenous injection of STZ at a dose of 42mg/kg,b.w. dissolved in citrate buffer. The water extract of C.M. was orally administrated once a day for 7 days at a dose of 500mg/kg,b.w(body weight). or 1,000mg/kg.b.w. The content serum glucose was significantly decreased in C.M. treated group compared to the those of STZ-control group. The content of hepatic glycogen and activities of glucose-6-phosphate dehydrogenase(G-6-PDH), glucokinase(GK) were significantly increased, but activity of glucose-6-phoshatase(G-6-Pase) was significantly decreased in C.M. treated group compared to the those of STZ-control group. These results indicated that water extract of C.M. would have antidiabetic metabolism effect in STZ-induced diabetic rats.
The objective of this study was to determine the feeding effect of a diet containing Cordyceps with fly pupa on the changes in blood lipid profile from broiler chickens, fatty acids and thiobarbituric acid reactive substances (TBARS) in chicken meat. A total of 360 chicks (Ross strain 308) were divided on hatch day into four treated groups with respect to a 35-day feeding regimen: T1 (control group), T2 (2.0% Cordyceps with fly pupa), T3 (3.5% Corceps with fly pupa) and T3 (5.0% Cordyceps with fly pupa). Blood triacylglyceride and total cholesterol level was significantly decreased by 5.32-10.63% and 9.23-12.62%, respectively, in groups T2, T3 and T4 when compared to T1 (p<0.05). Water holding capacity was significantly highest in T2 (p<0.05), while there were no significant differences among groups T2, T3 and T. In chicken meat, the ratio of saturated fatty acid to unsaturated fatty acid was high in the T3 and T4 groups, the ratio of n-6 to n-3 fatty acid was low in the T2, T3 and T4 groups and oleic acid (18:1n-9) was high in the T2, T3 and T4 groups, when compared to T1 (p<0.05). TBARS tended to increase according to the storage time (in days), and was significantly lower in the chicken thigh muscles with skin in groups T2, T3 and T4 as compared to T1 (p<0.05). These results suggest that a diet containing 2.0-3.5% of Cordyceps with fly pupa may decrease blood lipid and improve both the shelf-life and quality of broiler chicken meat.
All spectroscopic methods used in this work indicate the instability of tungstophosphates in aqueous solutions and considerable dependence on pH with regard to the dominant species present in the solution. UV spectroscopy indicates that some changes occur in the system but they cannot be specified. IR spectroscopy gives more information on the identification of the dominant species as a function the pH of the solution. NMR spectroscopy provides unique data, which can be used for more accurate interpretation of changes in the solution of various pH values. In the case of aqueous solutions of tungstophosphates, the parent anion was present only in a very acidic solution of ca. pH 1. Some differences in interpretation of the molecular species present under various experimental conditions can be ascribed to some extent to the diversity of chemical shifts of NMR. Under physiological conditions attained with the addition of NaOH, tungstophosphates was dominantly present in the form of the lacunary monovacant anion.
Natural Omija belongs to magnoliaceae was known to possess natural odor, taste, color, and various pharmaceutical & chemical characteristics. Omija extraction was extracted using ethanol as a solvent. Omija extract showed a light red-violet color of viscous liquid state. Some conclusions from the result of characteristic experiment were obtained as follows. From the result of antimicrobial experiment, occurrence of staphylococuss aureus and aspergillus niger as microbes was decreased according to the passage of time. This phenomenon could know that Omija component is affected to antimicrobial effect. From the result of dye experiment, fiber dyeing showed with some ivory color after dyed to cotton and silk. This phenomenon could know that Omija component is affected to dyeing effect from observation of scanning electron microscope(SEM). From the result of instrument analysis, inorganic components of K(107.30ppm), Na(2.110ppm), Ca(0.935ppm), Mg(0.891ppm), Li(0.270ppm) etcs from Omija were detected with ICP/OES, and aromatic components of benzene(10.808), a-pinene(13.996), phenol(14.183), β-terpene(15.840), a-terpinolene(17.616) etcs from Omija were also detected with GC/MSD.
Alloys of nylon(PA6) and ethylene-propylene-diene polymer, modified with maleic anhydride(MEPDM) were prepared using a melt kneading process. This study focuses on the effects of the content of MEPDM in PA6 blend on the mechanical and thermal properties of such blends where MEPDM is the dispersed phase. Mechanical properties were examined by stress-strain measurements and impact strength test. Both impact strength of PA6/MEPDM at room temperature and at -20℃ were improved up to 400-550% with the amounts of MEPDM. However, PA6/MEPDM containing 3-5 wt% of MEPDM showed the about 700kgf/m2 of the maximum tensile strength but 8.5 % of the lowest elongation. For certain compositions of PA6 with rubbery MEPDM, the interesting reduction of elongation is caused by the reaction of the polyamide amine end groups with maleic anhydride portion in MEPDM, that provided a reinforcement in the PA6 matrix. In addition, the introduction of antistatic agent on the surface of alloys causes significant reduction of their surface electrostatic resistance.
In this study, we are crystallized to the low density polyethylene (LDPE) micro-particles in n-dodecanol solution by thermally induced phase separation(TIPS) method. The Low density polyethylene micro-particles is used in a wide variety of polymer coatings and industrial application. The utility of that for a particular application depends on a number of factors such as the particle size and distribution, and chemical composition of the materials. However, there are still needs for new methods of preparation which will provide the structure with unique sizes. The widely used processes for micro-size particles are crystallization method and thermally induced phase separation. TIPS process based on the phase separation mechanism was performed for the LDPE system which undergoes liquid-solid phase separation. Effects of various operating parameters were examined on the structure variation of the particles. Professionality, take-up speed and crystallization rate depended on temperature and concentration of polymer in solution.
Encapsulation of L-ascorbic acid(AA) into BGsome was attempted to improve its stability. BGsome is a bio-compatible vesicular system prepared by dispersion of hydrated liquid crystalline phase formed through hydration of 1,3-butylene glycol(BG)-dissolved lecithin with an aqueous solution containing hydrophilic component. The characteristics of AA encapsulated BGsome, such as droplet size, surface charge, and solution appearance, was investigated. The concentration of AA solution had considerable effect on droplet size and surface charge of BGsome. Several tens nanometer droplet made by sonication treatment did not showed any change of size with storage time. Stability of AA was improved by encapsulation into BGsome, which was verified through DPPH test and HPLC assay.
The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/CeO2-ZrO2, Ni/Al2O3-MgO and Ni-Ru/Al2O3-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio(O2/CH4, H2O/CH4). The O2/CH4 and H2O/CH4 ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing O2/CH4 ratio. Among the catalysts used in the experiment, the Ni-Ru/Al2O3-MgO catalyst showed the highest activity. The 60% of CH4 conversion was obtained, and th e reactor temperature was maintained 600℃ at the condition of GHSV=10000h-1 and feed ratio S/C/O=0.5/1/0.5.
The electrochemical performances of an asymmetric hybrid capacitor were investigated using LiFePO4 as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using LiFePO4/ACF electrode turned out to be 0.87F/cm2 and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.
The pearlesent pigment has received attention in a diversity of fields like cosmetics, inks, paints and so on. Ferric Ferrocyanide, one of the nano sized pearlescent pigment, is a kind of surface modification pigment that covers a metal oxidized substance or a coloring agent with uniform thickness. Characteristics of pearlescent pigment are various interference color, intense gloss effect and a three-dimensional effect. We synthesised the pearlesent pigment that ferric ferrocyanide can be deposited on the titania/mica surface by hydrothermal synthesis method. The process parameters are concentration of precursor, controlling pH and reaction temperature. The optimun conditions is that amount of iron(III) chloride hexahydrate is 3.1 wt% and amount of potassim ferrocynide trihydrate is 3.6 wt% in the started pH 4.5 at 70℃. The coating rate and coating efficiency of ferric ferrocyanide was about 1.47 % and 96.7 %, respectively. The synthesised pearlesent pigment was characterized by SEM, XRD, FT-IR and EDS.
Antioxidant agent, 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane were prepared and investigated the antioxidant activity on recycled rubber mat manufactured with waste tire powder. Mechanical properties of rubber mat are influenced by many factor such as compounding ingredients and state of cure, process of rubber, and fillers. Our study aim is to investigate influence of antioxidant activities on ozone cracking and the thermal aging time. In this work, the degradation of recycled rubber mat was studied and suggested mechanism to involve two-type of degradation, thermal aging and cracking both of which can be contained antioxidant or non-antioxidant agent.
It was researched to be alternative of TGIC type hardener with human hazard element as PT 910 mix powder paint with hardener. Generally PT 910 was compared with TGIC & Epoxy resin of hardener to be used at thermosetting powder paint. We inquired a property of matter for paint through Gel time, glass transition temperature, melting point and a property of matter for film through a property of adhesion, a property of tolerance, softness, gloss, acid-resistant, alkali-resistant, salt water spray-resistant, facilitation climatic. When PT 910 is used of hardener, it was shown the excellent results in gel time, softness, salt water spray-resistant, fracilitation climatic and the similar results in melting point, a property of tolerance, a property of adhesion, gloss, acid-resistant, alkali-resistant, as compared with the powder paint used by TGIC hardener. The glass transition temperature was little low. But there was slightly different results. After the study results, we reached the conclusion that thermosetting powder used by PT 910 is alterative to by TGIC hardener.
In this study we experimented that how polyurethane effect to acrylic-polyurethane resin in Full-Grain leather coatings. First of all, we consummated waterborne acrylic emulsion and waterborne polyurethane resin, Than we prepared F.G leathers which were coated by acrylic resin and acrylic-polyurethane resins. According to measured data for solvent resistance, acrylic resin and acrylic-polyurethane resins had good property. Sample a(WAC) had most low strength(2.10kgf/mm2) and sample d(WAC 93 : WPU 7) had most high strength(3.41kgf/mm2). Also we knew that most good property of abrasion is d(47.4 mg). In elongation case, a(WAC) had most good result(645 %) in this experiment.
This research is a basic researching process for producing solid fuel that mixing paper sludge and Heat Transfer Medium Oil. Under the presence of Heat Transfer Medium Oil, paper sludge is heated and dried with home appliance microwave for comparing drying efficiency and energy efficiency of different types of drying method. As a result, Heat Transfer Medium Oil and paper mixing case of drying method, OMD, is the most efficient way to shorten the time for evaporating moisture in the paper sludge. In addition, heat transfer effect and density is increased with adding Heat Transfer Medium Oil by microwave. Future more, OMD's energy cost for evaporating whole moisture is 78% cheaper than MD. Also, OMD process shows the best energy efficiency with comparing other process. Evaporation rate of paper sludge evaporation process with microwave is 11.66% increased by adding Heat Transfer Medium Oil 150g. Preheating Heat Transfer Medium Oil or improving different ways injecting Heat Transfer Medium Oil is a good way to increase a rate of initiative moisture evaporation process.
The studied results of the gasohol, which is the mixture of gasoline and ethanol, were investigated for the promotion of applications on commercially by gasoline vehicle referring to octane number, minimum water contents be involved, and separation inhibitors for protecting phase separation etc. especially for the E10 and E20. The results showed that octane number will be revised by higher value as the ethanol is added more, and it's more effect in case of be added as a mixture than individually when inhibition agents is added for the inhibition of separation. and it's reasonable for the water contents of less than 1% by comparing with experimental results and in view of regulations of various countries.