Surfactants are the surface-active molecules that display amphiphilicity, Because of this surface activity and amphiphilicity, surfactants have been used in wide industrial applications such as foods, detergents, cosmetics, medicine, polymers, paints, flotation, textiles. These days, their applications extend to high-technology industries such as microelectronics, magnetic recording material, advanced batteries, novel separations, etc. As new applications of surfactants are found and the demand of the surfactants increases, surfactant industry has been more pressed to face a formidable challenge, which is to develop surfactants that are envirionmentally friendly. In this regard biosurfactants may be alternatives to chemical surfactants, since biosurfactants are biologically compatible, more biodegradable, less toxic, and highly specific. Because of these excellent advantages over those of chemical surfactants, much efforts have been made in biosurfactant research. This article reviews biosurfactants in several aspects, that is, their definition, structures, properties, applications, and prospects.
Diazotization of STA synthesized by the indirect diazotization method. The effect of catalyst and agitation (rpm) about STA and H-acid reaction were examined and the optimum conditions were investigated experimentally. The yields and characteristics of 1.st coupling and diazotization synthesis were identified by HPLC and FT-IR analysis. 1.st condensation of CNC and mPDSA were synthesized at 5℃ and pH=6.5. The conditions of alkaly coupling of H-acid were synthesized at 5℃ and pH=8. The condensation of products was identified by U. V. analysis. From this results, It was obtained to reactive dyestuffs of bi-functional reactivity with high fastness and high adsorption.
The phase separated structure and the electo-optical properties of the polymer /liquid crystal(LC) composite films including a dye were investigated. The phase separated structure of the polymer /LC / dye composite film(GH composite film) including below 2wt% dye against LC was almost same with the composite film which does not include dye. But the electro-optical properties of the GH composite film strongly depended on weight fraction of the dye against the LC. The response time of the GH composite film increased with the increase of the dissolved dye in LC because the dye acts as a registivity for the orientation of LC molecules by the electric filed.
Durable softening water-repellenting agent such as PODCW, PDDCW and PEDCW were prepared by blending cationized compound such as poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate)[PODC], poly(2-dodecyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PDDC] and poly(2-ethylhexyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PEDC], and cationized compound of fatty carbamide, of which synthetic methods were reported in the previous paper, waxes, and emulsifiers. The results of physical tests of the P/C blended fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed a remarkable improvement of the physical properties. The prepared water-repellenting agents, PODCW-6 and PDDCW-1, were treated on P/C blended fabrics with and without resin. For any cases, there are a little changes between initial water repellency and repellency after 3 times washing of the fabrics. Therefore, the water-repellenting agents proved to be a durable agents, and initial water 100+ and 90+ point, respectively.
The procedure to prepare an acrylic emulsion water repellents by blending of arcylic copolymer, activated polyethylene, wax, and emulsifiers was published in the previous paper. After the treatment of the prepared water repellents on a cotton fabrics with and without textile finishing resin, washability, contact angle, tearing strength, and crease recovery were tested. As the result, there were remarkable improvements in physical properties. Proper curing temperature of the synthesized water repellents impellents was 150℃ : proper using concentration was 5wt% : sodium acetate was the best catalyst for water repellents among the used, and proper concentration was 1.0wt%.
The antioxidant effects of freeze-drying acorn were examined to find how much the freeze-drying acorn can reduce peroxidized corn oil poisoning, which influenced cholesterol, triglyceride, phospholipids, lipidperoxides, GOT(glutamate oxaloacetate transaminase), GPT(glutamate pyruvate transaminase) in serum, and cholesterol, triglyceride, lipidperoxides, fatty acid of phospholipids, SOD(superoxide dismutase), catalase in liver. In this experiment, male rats of Sprague-Dawley strain were used. The rats were divided into 6 groups, which were fed differently for 5 weeks : basal diet, 10% peroxidized corn oil added to basal diet, 1% acorn flour and 10% peroxidized corn oil added to basal diet, 5% acorn flour and 10% peroxidized corn oil added to basal diet, 10% acorn flour and 10% peroxidized corn oil added to basal diet, and 0.25% tannic acid and 10% peroxidized corn oil added to basal diet. The results were as follows : It was found that the peroxidized corn oil-fed 5 weeks induced the elevation of cholesterol, triglycerides, lipid peroxides, GOT, GPT in serum, and cholesterol, triglycerides, lipid peroxides in liver as compared to the basal diet-fed rats, but the acorn flour-fed rats reduced the elevation of these components. In addition, saturated fatty acid in rat liver phospholipids induced the elevation by feeding of peroxidized corn oil and, on the other hand, the acorn flour-fed rats reduced the elevation of saturated fatty acids. The acorn flour-fed rats reduced the activity of SOD in liver while they enhanced the activity of catalase in liver as compared with the peroxidized corn oil-fed rats.
저분자량 (M=1970)을 갖는 poly(styrene)(PS)와 poly(vinymethylether) (PVME)의 블렌드를 열산화시킬 때 PVME의 분자량 감소 속도는 높은 분자량을 갖는 PS와 PVME의 블렌드를 열산화 시킬 때의 PVME 분자량 감소 속도보다 훨씬 느리다. 열산화 과정 동안 PS의 분자량은 변화하지 않았으며 저분자량의 PS의 일부가 산화된 PVME를 분리할 때 함께 녹음을 알 수 있었다. 저분자량의 PS의 모델 화합물로써 2. 4-diphenylpentane을 합성하였고 1%,5%,10%의 모델 화합물을 PVME에 첨가하여 열산화 시켰다. 이 모델 화합물을 첨가하여 PVME의 열산화를 약간 지연시킬 수 있음을 알 수 있었다.
Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging 9,000~120,000 was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of 15℃~45℃. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.