검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PartI of this paper identified the location and size of the noise sources from the axial flow fans, and partII based on that, identified the magnitude of sound pressure from the case and the blade according to frequency in the range of 2200 Hz to 5000 Hz. The equation of Lighthill was used for calculation. Generally, when measuring noise, the analytical area was extended more than 1m from the outlet of the fan. To eliminate the effects of backflow coming from the rear of the fan, the analytical area was extended a little longer than 1m. From the results of the analysis, high noise occurs in the low frequency area, and the lower noise becomes in the high frequency area. The maximum sound pressure generated in the range of 2000Hz~5000Hz is 65dB at a distance of 1m and 82dB at the outlet of the fan. Noise of the fan mainly occurred around the blade and guide, and the noise decreased as the frequency increased between 2200Hz and 3400Hz, but the noise increased as the frequency increased between 3800Hz and 5000Hz.
        4,000원
        2.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, numerical analysis was carried out to develop low-noise axial fans, which are often used for ventilation in houses. A commercial program and the turbulence models are used for the analysis of internal fan. Proudman acoustic power model and the Curle surface acoustic power model were used for analysis. As a result, the distribution of flow velocity and pressure around the blade and guide of the fan was high, and low in the center of the fan. Noise from the inner wall of the fan case and the blade surface was the highest at the body and vane connections of the blade, and low at the center of the vane and the center of the body.
        4,000원
        3.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        광역방제기의 송풍팬은 방제성능을 좌우하는 핵심 부품으로서 구조적으로 안전성이 확보되어야 한다. 따라서, 대풍량 축류식 송풍기의 알루미늄 축류팬의 안전한 운용을 위해, 축류팬 블레이드에 대해 3차원 전산유동해석과 구조상호해석을 실행하여 축류팬의 요구수명을 만족할 수 있는 개선된 축류팬을 제시하고자 하였다. 이에 제1 보에서는 유동해석과 구조해석을 통하여 기존의 일체형 모델의 안전성을 검토하였는데, 그 결과 축류팬의 기계적 강도가 다소 미흡하여 무한수명을 보장할 수 없음이 판단되어 개선 설계가 절실히 요구되었다. 제2 보의 개선된 설계에서는 축류팬의 각 블레이드를 허브에 조립하여 응력을 분산시킴으로써 등가응력 수준을 반감시킬 수 있었다. 개선모델의 경우 유동저항에 의한 압력분포와 원심력으로부터 예측된 최대 등가응력(74.21MPa)이 소재 항복강도의 1/2 이하로 저감되었고, 내구수명해석을 통해 알루미늄 합금 소재의 무한 피로한도를 보장할 수 있을 것으로 예상되었다. 또한 제1 모드 고유 진동수가 105.62 Hz로서 공진현상은 발생하지 않을 것으로 예상되어 안전한 설계임을 확인할 수 있었다.
        4,000원
        4.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        광역방제기의 송풍팬은 장비의 안전성과 방제성능을 좌우하는 핵심 부품으로서 구조적으로 안전성이 확보되어야 한다. 본 연구에서는 광역방제기에 사용되는 축류식 송풍기의 안전한 운용을 위해, 알루미늄 축류팬 블레이드에 대한 3차원 전산유동해석과 구조상호해석을 실행하여 축류팬의 요구수명을 만족할 수 있는 개선된 축류팬을 제시하고자 하였다. 이에 제1 보에서는 유동저항과 회전력에 의해 발생하는 최대등가응력 값을 구조해석을 통하여 축류팬 재질의 기계적 피로강도와 비교하여 기존모델의 안전성을 검토하고자 하였다. 송풍기 작동 시 발생하는 최대 등가응력값(138.68 MPa)은 축류팬 알루미늄 소재(AC3A, 413.0-F)의 항복강도(145 MPa)에 근접한 값으로 축류팬의 기계적 강도가 다소 미흡하였고, 내구수명은 1.24~11.15×106 회(최대 90시간)으로 분석되었다. 따라서 피로강도의 산포를 고려할 때, 관행기존 설계의 축류팬에 대한 무한수명을 보장할 수 없으며 개선 설계가 요구되었다.
        4,200원
        5.
        2013.02 구독 인증기관·개인회원 무료
        Axial flow fan under certain condition may stall. The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. In this study, the time dependent Navier-Stokes equations are numerically solved in large size axial-flow fan with groove