Background: Although several studies have reported functional improvements after forward walking training on a treadmill and after backward walking training on a treadmill, there is a lack of immediate effects data, investigating spatiotemporal parameter, neuromuscular recruitment. Objectives: To compare the immediate effects between forward and backward walking on treadmill training, present study measured muscle activities of the lower extremity, gait parameters, and dynamic balance.
Design: Cross-sectional study.
Methods: The twenty-four asymptomatic young male subjects were participated in this study. Subjects have performed 15-min of forward and backward walking on treadmill. Before and after treadmill walking, the gait parameters were measured with the GAITRite. The dynamic balance abilities were assessed with the Y-balance test. Muscular activities were collected from the tibialis anterior, gastrocnemius, biceps femoris, and rectus femoris during forward and backward walking.
Results: Muscular activities of the biceps femoris and tibialis anterior were significantly different between forward and backward walking conditions, which were higher with the backward walking (P<.05). Compared to the pre-measurement, the normalized dynamic balance composite score of the post-measurement was significantly higher with the backward walking (P<.05). Regardless of the treadmill training method, there were no significant differences between pre and post measurement, both the stride length and step length (P>.05).
Conclusion: The performing backward walking training has positive effects for dynamic balance.
Background: Backward walking exercise may offer some unique and potentially beneficial differences compared with forward walking exercise. There is still a lack of research on backward walking exercises and forward head posture.
Objects: The purpose of this study was to determine the effect of backward walking exercise on college students forward head posture in their 20s.
Methods: Twenty-one subjects participated in the experiment. The subjects were those with a craniovertebral angle (CVA) of 55 degrees or less who understood the purpose and method of this study and voluntarily agreed. A camera capable of taking pictures of the lateral plane was installed at a distance of 1.5 meters before exercising. Pictures were taken before walking backward, and after walking for 15 minutes on the treadmill, the images were taken in the same way. The composition of the backward walking exercise was walking at a rate of 1.0 for 5 minutes, and the remaining 10 minutes were walking at a rate of 1.5. Wilcoxon signed rank test was used to compare CVA and craniorotational angle (CRA) before and after exercise.
Results: As a result of this study, there was a significant difference in CVA before and after exercise (p < 0.05). There was a significant difference in CRA before and after exercise (p < 0.05).
Conclusion: The backward walking exercise and verbal command seems to have positively influenced the changes in CVA and CRA among college students in their 20s. It seems that studies to confirm balance or muscle activity as well as changes in forward head posture through the long-term intervention of the backward walking exercise should be conducted.
Background: Gait problems appear in most stroke patients. Commonly, stroke patients show the typical abnormal gait patterns, such as circumduction, genu recurvatum, and spastic paretic stiff-legged gait. An inclined treadmill gait exercise is good for gait problems of stroke patients. In addition, the backward walking training has been recommended in order to improve the component of the movement for the forward walking.
Objects: The purpose of this study to investigated the effects of backward walking with inclined treadmill training on the gait in chronic stroke patients.
Methods: A total of 30 volunteers were randomly allocated to two groups that walked on an inclined treadmill: the experimental group (n1=15), which walked backward, and the control group (n2=15), which walked forward. To measure the improvement of the patients’ gait, a Figure of Eight Walking Test (F8W), Four Square Step Test (FSST), and Functional Gait Assessment (FGA) were performed. We also measured spatio-temporal gait variables, including gait speed, cadence, stride length, and single limb support using a three-axial wireless accelerometer. The measurements were taken before and after the experiment. The Wilcoxon signed-rank test was used to compare both groups before and after the interventions. The Mann-Whitney U test was used for the comparisons after the interventions. The statistical significance was set at α=.05.
Results: Before and after experiment, all dependent variables were significantly different between the two groups (p<.05). As compared to the control group, the experimental group showed more significant improvements in F8W, FSST, speed, cadence, stride length, and single limb support (p<.05); however, FGA in this group was not significantly different from the control (p>.05).
Conclusion: Our results suggest that backward walking on an inclined treadmill is more effective for improving the gait of stroke patients than forward walking.
To compare the effects of forward walking and backward walking on surface electromyographic analysis of quadriceps muscles at treadmill grades of 0%, 5% and 10%, subjects were randomized to eleven athletics (5 females, 6 males), with a mean age of 17.8 years, and a SD of 4.66 years. The values of the surface electromyographic (SEMG) activity of the rectus femoris (RF), vastus lateralis (VL) and vastus medialis oblique (VMO) were measured during forward walking and backward walking on a treadmill at grades of 0, 5 and 10%. The subjects walked for approximately 10 seconds at 4.0 km/h. The data were analyzed by repeated measuring of the two-way ANOVA and analyzed by a paired t-test between forward walking and backward walking. The SEMG activity levels of the RF, VL and VMO were the highest when both the forward walking and backward walking increased incrementally for treadmill grades of 0% to 10%, but the VMO/VL ratio had no significant changes. The SEMG activity levels of the RF, VL and VMO were significantly different between directions. However, SEMG activity levels of the RF, VL, VMO and VMO/VL ratio did not show significant difference among the treadmill grades. No statistically significant interactions were detected between the direction of walking and treadmill grade. Backward walking on the treadmill at 4 km/h and grades of 0%, 5%, 10% elicited a greater SEMG activity on the quadriceps muscles than did forward walking under the same conditions. The results suggest that the quadriceps may be effectively activated by performance at treadmill grades of 10%. This investigation confirms that backward walking up an incline may place additional muscular demands on individuals.