Background: Gait problems appear in most stroke patients. Commonly, stroke patients show the typical abnormal gait patterns, such as circumduction, genu recurvatum, and spastic paretic stiff-legged gait. An inclined treadmill gait exercise is good for gait problems of stroke patients. In addition, the backward walking training has been recommended in order to improve the component of the movement for the forward walking.
Objects: The purpose of this study to investigated the effects of backward walking with inclined treadmill training on the gait in chronic stroke patients.
Methods: A total of 30 volunteers were randomly allocated to two groups that walked on an inclined treadmill: the experimental group (n1=15), which walked backward, and the control group (n2=15), which walked forward. To measure the improvement of the patients’ gait, a Figure of Eight Walking Test (F8W), Four Square Step Test (FSST), and Functional Gait Assessment (FGA) were performed. We also measured spatio-temporal gait variables, including gait speed, cadence, stride length, and single limb support using a three-axial wireless accelerometer. The measurements were taken before and after the experiment. The Wilcoxon signed-rank test was used to compare both groups before and after the interventions. The Mann-Whitney U test was used for the comparisons after the interventions. The statistical significance was set at α=.05.
Results: Before and after experiment, all dependent variables were significantly different between the two groups (p<.05). As compared to the control group, the experimental group showed more significant improvements in F8W, FSST, speed, cadence, stride length, and single limb support (p<.05); however, FGA in this group was not significantly different from the control (p>.05).
Conclusion: Our results suggest that backward walking on an inclined treadmill is more effective for improving the gait of stroke patients than forward walking.
Background: A forward head posture (FHP) is one of the most common types of poor head posture in patients with neck disorder. A prolonged FHP might increase pressure on the posterior cranio-cervical structure and exhibit reduced performance on a cranio-cervical flexion test (CCFT). CCFT is included to activate deep cervical flexor muscles and inhibit excessive activation of superficial cervical flexor muscles. Therefore, the selective activation of deep cervical flexors is needed for effective exercise for FHP.
Objects: The purpose of this study was to compare muscle thickness between longus colli (Lco) and sternocleidomastoid (SCM) using ultrasonography in subjects with FHP depending on head support.
Methods: This was a cross-sectional, case-control research design study. The ultrasonographic images of Lco and SCM were taken in 17 subjects with FHP during the 5 phases of the CCFT with and without a head support. Towel was used for supporting head to make the neutral head position in supine. Changes in muscle thickness during the test were calculated to infer muscle activation. Data were analyzed using repeated measures of two-way analysis of variance with the significance level of .05.
Results: When subjects performed the CCFT with head support, there was a significant difference in muscle thickness of Lco and SCM (p<.05). According to a post hoc paired t-test, change of thickness of Lco was greater at all phases, and change of thickness of SCM muscle was less at phase 4 and 5 in condition with head support (p<.01) compared to condition without head support (p<.01).
Conclusion: The result of this study suggest that applying head support for neutral head position during CCFT could be a useful method for activating Lco muscle without excessive activation of SCM muscle.
Background: The toe-spread-out (TSO) exercise has been introduced as a strengthening exercise for the abductor hallucis muscle in subjects with hallux valgus. Visual biofeedback using ultrasound imaging during exercise, may increase the ability to selectively contract the abductor hallucis muscle, compared with exercise alone.
Objects: The aim of this study was to investigate the effects of ultrasound imaging visual feedback during the TSO exercise with respect to its influence on the angle of the first metatarsophalangeal joint (1st MPJ) and the cross-sectional area (CSA) of the abductor hallucis muscle in subjects with hallux valgus.
Methods: Twenty-five healthy young subjects with a mean average age of 22.5 years, and a standard deviation of 2.3 years, were recruited for this study. Hallux valgus was defined as an angles greater than 15° angle of 1st MPJ. Goniometric measurement was used to determine the angle of 1st MPJ. In addition, an ultrasound system was used to collect the CSA of the abductor hallucis muscle in each foot. The angle of the 1st MPJ and CSA of the abductor hallucis were measured in three positions; the resting position, during TSO exercise, and during TSO exercise in conjunction with real-time ultrasound imaging feedback. All data analyzed using a repeated analysis of variance with Bonferroni correction in order to compare the dependent variables in all three positions. Statistical level of significance was set up as p<.05.
Results: The angle of the 1st MPJ was noted to be significantly reduced and the CSA of the abductor hallucis to be significantly greater during TSO exercise used in conjunction with ultrasound imaging visual feedback, compared to when the values were recorded during TSO exercise alone (p<.05).
Conclusion: Based on these findings, it can be concluded that the application of ultrasound imaging visual feedback during TSO exercise is more effective in contracting selectively the abductor hallucis than the use of exercise alone.
Background: In the treatment of temporomandibular joint (TMJ) disorder, the goals of traditional physical therapy are not only to reduce the inflammatory process leading to pain, but also to decrease joint overload and muscle hyperactivity. To achieve those goals, physical therapists generally use a photo-therapy, joint mobilization, and massage.
Objects: To examine the impact of an unloading technique using non-elastic taping on the pain, opening mouth, functional level, and quality of life in patients with TMJ disorder.
Method: Twenty patients with TMJ disorder were included in this study and randomly divided into the experimental (n1=10), and control (n2=10) groups. Traditional physical therapy including massage and stretching for 30 min was performed in both groups. Non-elastic taping was performed in the experimental group after traditional physical therapy, and they were recommended to keep the tape attached for 12 hours. Outcomes for pain, functional level, and quality of life were measured using a survey. The opening mouth was measured using a general ruler.
Result: Significant differences were observed in the pain level, opening mouth, functional level, and quality of life after the intervention and on follow-up in both groups. However, we found that while the levels of all parameters were maintained throughout the follow-up period in the experimental group, the functional status level was not maintained throughout the follow-up period in the control group.
Conclusion: Our unloading technique using non-elastic tape results comparable to those achieved by traditional physical therapy in the treatment of TMJ. However, the unloading taping method using non-elastic tape is more effective than traditional physical therapy in maintaining the impact of intervention
Background: Assessments of Sit-to-Stand (STS) and gait functions are essential procedures in evaluating level of independence for the patients after stroke. In a previous study, we developed the software to analyze center of pressure (COP) in standing position on Wii Balance Board (WBB).
Objects: This purpose of this study is to measure test-retest reliability of ground reaction forces, COP and time using WBB on STS and gait in healthy adults.
Methods: Fifteen healthy participants performed three trials of STS and gait on WBB. The time (s), vertical peak (%) and COP path-length (㎝) were measured on both tasks. Additionally, counter (%), different peak (%), symmetry ratio, COP x-range and COP y-range were analyzed on STS, 1st peak (%), 2nd peak (%) of weight were analyzed on gait. Intra-class correlation coefficient (ICC), standard error measurement (SEM) and smallest real difference (SRD) were analyzed for test-retest reliability.
Results: ICC of all variables except COP path-length appeared to .676∼.946 on STS, and to .723∼.901 on gait. SEM and SRD of all variables excepting COP path-length appeared .227∼8.886, .033∼24.575 on STS. SEM and SRD excepting COP path-length appeared about .019∼3.933, .054∼11.879 on gait.
Conclusion: WBB is not only cheaper than force plate, but also easier to use clinically. WBB is considered as an adequate equipment for measuring changes of weight bearing during balance, STS and gait test which are normally used for functional assessment in patients with neurological problems and elderly. The further study is needed concurrent validity on neurological patients, elderly patients using force plate and WBB.
Background: Recently, there has been an emphasis on the use of interventions with biofeedback information for the maintenance or correction of posture.
Objects: This study assessed the change of trunk posture and trunk muscle activation when people exhibiting postural kyphosis performed visual display terminal work with or without a contact feedback device (CFD).
Methods: Eighteen right-handed individuals were recruited. Thoracic angle and right thoracic erector spinae (TES) muscle amplitude were analyzed. There were two sessions in these experiments. The control session involved 16 minutes of typing without a CFD, and the CFD session involved 16 minutes of typing with a CFD. The visual analog scale score was analyzed with a paired t-test, and the kinematic and electromyography data were analyzed through two-way repeated analysis of variance.
Results: The paired t-tests revealed that subjects had significantly less pain after the CFD sessions than after the control sessions (p<.05). Significant main effects by session and by time were observed in the thoracic kyphosis angle (p<.05). There was a significant session×time interaction for TES amplitude (p<.05), along with significant main effects by session and by time (p<.05).
Conclusion: The CFD caused people with postural kyphosis to straighten and to activate their TES continuously, even though they were habituated to bend their bodies forward. Therefore, the CFD was a beneficial treatment tool
Background: Many previous studies recommended the side-lying hip abduction (SHA) exercise for targeting the gluteus medius (Gmed) and gluteus maximus (Gmax) muscle activity while the decreasing tensor fasciae latae (TFL) activation. Mischoice of hip position and angle in SHA may increase the risk of lower extremity injuries and undesirable muscle activation. However, information is limited on the effect of composite hip flexion angles and hip rotation on the gluteal muscle activity during SHA.
Objects: This study aimed to compare muscle activity (Gmed, TFL, and Gmax) and activity ratios (Gmed/TFL, Gmax/TFL, and Gmed/Gmax) using surface electromyography (EMG) during SHA exercise at three different hip flexion angles either with or without internal rotation (IR) in subjects with Gmed weakness. We hypothesized that applying hip flexion and IR during SHA would increase gluteal muscle activity and decrease TFL activity.
Methods: Muscle activity and activity ratios in 20 volunteers with Gmed weakness during 6 different SHA were investigated with surface EMG. One-way repeated-measures analysis of variance was used to determine the statistical significance.
Results: Significant differences were found among the six different exercises for Gmed (F2,41=11.817, p<.001) and Gmax (F3,52=5.513, p=.003) muscle activity, and Gmed/TFL (F3,54=8.735, p<.001) and Gmax/TFL (F2,37=4.019, p=.028) activity ratios.
Conclusion: Applying hip flexion is an effective method for increasing gluteal activity, and it elicits great Gmed/TFL and Gmax/TFL activity ratios during SHA in subjects with Gmed weakness.
Background: Shoulder horizontal adduction (HA) is performed in many activities of daily living. The limited range of motion (LROM) of HA is affected by the tightness of the posterior deltoid, infraspinatus, teres major, and posterior capsule of glenohumeral joint. The LROM of shoulder HA contributes to excessive scapular abduction.
Objects: The aim of this study is to compare the scapular abduction distance and three-dimensional displacement of the scapula during shoulder horizontal adduction between subjects with and without the LROM of shoulder HA.
Methods: 24 subjects (12 people in LROM group and 12 people in normal ROM group) participated. Subjects with less than 115° of HA ROM were included in LROM group. Shoulder HA was performed 3 times for measuring scapular abduction distance and three-dimensional displacement of the scapula. Tape measure was used for measuring scapular abduction distance. Scapular abduction distance was normalized by dividing the scapular size. Polhemus Liberty was used for measuring the three-dimensional displacement of the scapula.
Results: Normalized scapular abduction distance was significantly greater in LROM group than normal ROM group (p<.001). Three-dimensional displacement of the scapula during shoulder HA was greater in LROM group than normal ROM group (p<.05).
Conclusion: LROM group had a greater scapular abduction and three-dimensional displacement of the scapula during shoulder HA compared to normal ROM group.