검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.
        2.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        A Bayesian nonstationary probability rainfall estimation model using the Grid method is developed. A hierarchical Bayesian framework is consisted with prior and hyper-prior distributions associated with parameters of the Gumbel distribution which is selected for rainfall extreme data. In this study, the Grid method is adopted instead of the Matropolis Hastings algorithm for random number generation since it has advantage that it can provide a thorough sampling of parameter space. This method is good for situations where the best-fit parameter values are not easily inferred a priori, and where there is a high probability of false minima. The developed model was applied to estimated target year probability rainfall using hourly rainfall data of Seoul station from 1973 to 2012. Results demonstrated that the target year estimate using nonstationary assumption is about 5∼8% larger than the estimate using stationary assumption.
        3.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.
        4.
        2011.03 KCI 등재 서비스 종료(열람 제한)
        The probability concepts mainly used for rainfall or flood frequency analysis in water resources planning are the frequentist viewpoint that defines the probability as the limit of relative frequency, and the unknown parameters in probability model are considered as fixed constant numbers. Thus the probability is objective and the parameters have fixed values so that it is very difficult to specify probabilistically the uncertianty of these parameters. This study constructs the uncertainty evaluation model using Bayesian MCMC and Metropolis -Hastings algorithm for the uncertainty quantification of parameters of probability distribution in rainfall frequency analysis, and then from the application of Bayesian MCMC and Metropolis- Hastings algorithm, the statistical properties and uncertainty intervals of parameters of probability distribution can be quantified in the estimation of probability rainfall so that the basis for the framework configuration can be provided that can specify the uncertainty and risk in flood risk assessment and decision-making process.