A method of quantitatively analyzing radioactivity of uranium waste in the In-situ measurement using Bayesian inference was proposed. When applying the traditional efficiency calibration method, which uses standard sources or Monte Carlo simulation, the radioactivity error is large depending on the degree of spread of the radioactive contamination especially in large sample such as a 200 L drum. In addition, the existing method has a limitation in that it is difficult to reflect the uncertainty according to the location of the source. In this preliminary study, to overcome the limitations of the existing method, a Bayesian statistical-based radioactivity quantitative analysis model was proposed that can increase the accuracy of analysis even in situations where radioactive contamination of uranium waste is non-uniformly distributed. As a result of evaluating the simulated waste with the proposed Bayesian method, the accuracy was improved more than about 6 times compared to the classical efficiency calibration method.
최근 기후변동성으로 유발되는 불안정한 기상상태를 효과적으로 관측하고자 레이더가 도입되고 있다. 레이더는 경험식으로 산정된 Z-R 관계식을 통하여 레이더 강우량을 제시하게 된다. 이 과정에서 레이더 강우량은 필연적으로 지상에 도달하는 실제 강우량과는 정량적 오차가 발생하게 된다. 본 연구는 확률통계학적 방법론을 이용하여 Z-R 관계식 매개변수 산정과정에서 우리나라의 강우특성을 고려함과 동시에 Z-R 관계식 매개변수의 불확실성을 정량적으로 제시하고자 한다. 강우의 계절성을 고려하여 Z-R 관계식 매개변수를 추정하는 과정에서 Bayesian 추론기법을 도입하여 생산된 레이더 강우량은 기존의 Z-R 관계식에 비하여 개선된 통계적 효율기준을 제시하였다. 따라서 Bayesian 추론기법을 활용한 Z-R 관계식 매개변수 산정은 정량적으로 신뢰성 있는 고해상도 강우정보의 생산은 고도화된 수문해석 및 기상예보 지원을 가능케 할 것으로 판단된다.