This study assessed the utility of netted melon ‘Top Earl’s’ and cantaloupe melon ‘Alex’ as functional fruits by analysing their moisture content, vitreous sugar, folic acid, citric acid, and beta-carotene levels. High-performance liquid chromatography (HPLC) was used to analyse the free sugar, folic acid, citric acid, and beta-carotene levels. The moisture content was not significantly different between ‘Top Earl’s’ and ‘Alex.’ The glucose, sucrose, and fructose contents were three, two, and one-and-a-half fold higher in ‘Alex’ than in ‘Top Earl’s.’ Moreover, citric acid was approximately three times higher in ‘Alex’ than that in Top Earl’s.’ However, the folic acid content was higher in ‘Top ‘Earl’s’ than ‘Alex,’ and the amount was 124 μg / 100 g FW and 112 μg / 100 g FW respectively. ‘Beta-carotene was undetectable in ‘Top Earl’s,’ whereas it was 1000 μg / 100 g FW in ‘Alex.’ β-carotene, a substance that is converted in the body into vitamin A and acts as an antioxidant, is an important component in healthy food. These results suggested that the cantaloupe melon ‘Alex’ has a higher free sugar content and functional ingredients, such as antioxidants, including citric acid and beta carotene, than the netted melon ‘Top Earl’s.’
Beta-carotene is the most prominent member of the group of carotenoids, natural colorants that occur in the human diet. Beta-carotene is also an effective source of vitamin A in both conventional foods and vitamin supplements, and it’s generally safe. In this study, we explored the beta-carotene contents in agricultural products widely and specifically grown in Korea. The beta-carotene contents were ranging from 223 to 27,908 μg/100 g in leaves, and 0 to 7,588 μg/100 g in vegetables. In leaves and vegetables, the amount of beta-carotene was the highest in green tea powder (27,908 μg/100 g), followed by pepper (7,588 μg/100 g). In fruits, the beta-carotene content was found to range from 0 μg/1,011 g to maximum of 293.66 μg/100 g(plumcot). However, there beta-carotene was not detected in strawberry. In the case of cereals and specialty crops, the beta-carotene contents were 326 μg/100 g for non-glutinous rice, 313 μg/100 g for glutinous rice, 57 μg/100 g for amaranth and 15 μg/100 g for pine nut, respectively. However, the beta-carotene content was not detected in other samples. This study revealed the presence of beta-carotene content in agricultural products specifically grown in Korea for nutritional information and food composition database.
Beta-carotene producing transformants were produced in the background of 'Nagdongbyeo', a Japonica rice cultivar. Introgression of the carotenoid locus in the transformant, PAC4-2 into the elite cultivar 'Ilpumbyeo' was started. To initiate a backcrossing program, we surveyed 220 SSR markers and found that 38% of them were polymorphic between 'Ilpumbyeo' as a recurrent parent and the PAC4-2 as a recipient parent. The selection strategy comprising foreground and background selection was employed. First, foreground selection was practiced in BC1, BC2, and BC3 generations using the transgene specific PCR-based marker in addition to visual scoring of the seed color. Marker-based background selection combined with phenotypic selection was employed from BC3F2 to BC3F4 generations. Blast search indicated that the transgene PAC4-2 was located between SSR markers, RM6 and RM482. 240 BC3F3 and 63 BC3F4 lines were evaluated for four agronomic traits including days to heading. Most of the lines were similar to Ilpumbyeo in agronomic traits evaluated. The percentage of PAC4-2 genome ranged from 4% to 21% with a mean of 12.5%, which was higher than the expected for an unselected BC3 backcross population. This could be explained by the fact that two genes for beta-carotene and the stripe virus resistance were targeted in this study. We selected 10 representative BC3F5 lines from 63 BC3F4 lines based on agronomic traits and carotenoids content. The selection strategy would be appropriate for the introgression of beta-carotene gene in a breeding program.
This study was carried out to breed and develop high quality and functional nutrient tomato with multi disease resistance as well as a stable growing adaptation for fresh market usage under protected plastic houses cultivation. The materials were used 5 inbred lines and their 6 hybrids of large tomato group, which have been bred and developed from 1999 to 2007 in Division of Plant Resource Department of Chungnam National University. Fruit weight showed hybrid vigor effect that F1 hybrids weighed more than their parent lines, fruit shape formed three type of oblate, deep oblate and globe shape, in firmness and pericarp thickness have got a high significant correlation, inbred DN611 line was measured the most firm fruit with 6.04 mm pericarp thickness. In fruit color at maturity, pink color crossed to red color appeared all red fruit color in the F1 hybrids, it means red skin color is a dominant gene compared to pink skin color is a recessive gene in tomato, while between fruit skin color and shoulder part color showed no any co-relationship. The sugar content and titratable acid of F1 hybrids inherited an intermediate data of their parent lines, the flavor of KP543 inbred line and the hybrid (JB535 x KP543) revealed the better taste with high brix and proper titratable acid content*. In beta carotene content DN611 line showed 2~3 times higher than other materials so that its 3 hybrids contained an increased level of beta carotene, lycopene content was not so much difference among inbred lines and F1 hybrids, of them MD508 contained higher of 8.72 mg and hybrid (JB535 x JA517) had 8.05 mg lycopene content per 100 g fruit, overall pink skin color and red skin color measured a higher lycopene content than yellow and orange skin color at ripe stage. In disease resistance test by PCR marker for Fusarium race2 (I2), Nematode (Mi1), ToMV (Tm22), Cladosporium (Cf9), (JB535 x JA517) hybrid have got multi-resistance with homozygote band in Nematode, ToMV, Cladosporium and heterozygote band in Fusarium race2. Through this breeding program we could select high quality and functional nutrient with multi resistant F1 hybrids and inbred lines in tomato which are two best hybrids (JB535 x MD508), (JB535 x JA517), additionally developed high beta carotene inbred line DN611 and increased the level of lycopene inbred line MD508. These results will be very useful to make a high quality tomato variety continuously.