Zebrafish(Brachydanio rerio)를 실험어류로 하여 phosphamidon과 profenofos의 생물농축계수(bioconcentration factor: BCF)와 배설속도상수(depuration rate constant) 및 LC$_{50}$를 측정하였다. Phosphamidon의 24, 48, 72, 96시간 LC50 모두 l00 mg/l 이상으로 측정되었다. Phosphamidon 1 mg/l(고농도)와 0.2 mg/l(저농도)에서 어류 체내에서의 농축정도는 두 농도군에서 각각 12시간 이후에 정류상태에 도달하여 168시간동안 거의 일정하였고, BCF값도 12시간에서 16시간 사이에 고농도(0.89, n=7)와 저농도(0.96, n=7)모두 1미만으로 낮게 나타났다. Phosphamidon의 배설속도상수는 고농도와 저농도에서 각각 0.21 h-1과 0.18 h-1 이었고, 반감기는 각각 3.30및 3.85시간으로 측정되었다. 고농도와 저농도에서 각각 12시간 및 8시간 이후에는 g당 0.07 및 0.04 $\mu\textrm{g}$이하로 떨어져 대부분 배설된다는 것을 알 수 있었다. Profenofos의 24, 48, 72, 96시간 LC50는 각각 2.9, 2.6, 2.2, 2.O mg/l로 측정되었다. Profenofos의 96시간 LC$_{50}$ 농도의 1/100농도(0.02 mg/l)와 1/500농도(0.004 mg/l)에서 어류체내에서의 농축정도는 phosphamidon과 마찬가지로 12시간 이후에 정류상태에 도달하여 168시간동안 거의 일정하였고, BCF값은 12시간에서 168시간 사이에 96시간 LC$_{50}$농도의 1/100농도와 1/500농도에서 각각 111.3(n=7)과 141.9(n=7)로 측정되었다. Profenofos의 배설속도상수는 96시간 LC50 농도의 1/100농도와 1/500농도에서 각각 0.10 $h^{-1}$과 0.09$h^{-1}$h-1이었고, 반감기는 각각 6.93 및 7.70시간으로 측정되었다. 각각의 농도에서 12시간 및 8시간 이후에는 g당 0.19$\mu\textrm{g}$ 및 0.18$\mu\textrm{g}$이하로 떨어짐을 알 수 있었다. Phosphamidon과 profenofos의 급성어독성은 profenofos가 높았고, BCF profenofos가 phosphamidon보다 약 100배 정도 높게 나타났으며, 배설속도는 phosphamidon이 profenofos보다 약 2배 정도 빨랐다.
The present study was performed to investigate the bioconcentration of BPMC, chlorothalonil, dichlorvos and methidathion. The BCFs(bioconcentration factors) and depuration rate constants for four pesticides in zebrafish(bracJxydanio rerio) were measured under semi-static conditions(OECD guideline 305-B) in a concentration of one-hundredth of the 96 hours LC_(50) of each pesticide at the equilibrium condition. The results obtained are summarized as follows : The BCFs of BPMC, chlorothalonil, dichlorvos and methidathion were 1.44±0.09, 2.223±0.063, 0.81±0.08 and 5.53±0.13, respectively. Depuration rate constants of BPMC, chlorothalonil, dichlorvos and methidathion were 0.028, 0.015, 0.220 and 0.152, respectively. The concentrations of BPMC, dichlorvos and methidathion in zebrafish reached an equilibrium in 3 days, and the equilibrium of chlorothalonil was reached after 14 days. Depuration rate of dichlorvos was the fastest followed by methidathion, BPMC and chlorothalonil. The lower BCF of BPMC was due to its relatively high K_(OW), slow K_(DEP), and low S_W and V_P, compared to chlorothalonil and methidathion. The BCF of chlorothalonil was much lower than that expected on the basis of high K_(OW) slow K_(DEP), low S_W and V_P. The reason is that the experimental concentration for chlorothalonil is 1/100 - 1/1000 lower than that of BPMC, dichlorvos and methidathion. The BCF of dichlorvos was lower than that of other pesticides due to its very rapid K_(DEP), very high V_P and S_W, and very low K_(OW). The BCF of methidathion was higher than that of other pesticides due to its very low V_P and S_W. Therefore, these data suggest that physicochemical properties of pesticides may be important in the bioconcentration.
Bioconcentration factors of some carbamates BPMC, carbaryl and carbofuran were determined. The tested fishes were zebrafish (Brachydanio rerio) and red sword tail (Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one- hundredth concentration of 96-hrs LC_(50) and one-thousandth concentration of 96-hrs LC_(50) and test periods were 3, 5 and 8 days. Obtained results are summerized as follows: In the case of BPMC and carbaryl, BPMC and carbaryl concentration in zebrafish extract and BCFs of BPMC, carbaryl were lower than those of red sword tail, and increased as increasing test concentration. In the case of same experimental concentrations, BPMC concentration in zebrafish extract and BCFs of BPMC were decreased as prolonging test periods. In the case of same experimental periods, carbaryl concentration in zebrafish extract and BCFs of carbaryl were decreased as increasing test concentration, especially dropped at 0.50 ppm. Carbofuran did not bioaccumulate in zebrafish for test periods, in the case of red sword tail, it was impossible to calculate on BCFs data because test concentration of one-hundredth and one-thousandth of 96hrs LC_(50) was under the detecting limit on GC. Test concentration of 0.05 and 0.10 ppm were the same tendency with BPMC and carbaryl. Determined depuration rate conatant were highest on carbofuran, and followed by carbaryl, and BPMC. It is suggested that low BCF of carbofuran is due to its relatively high water solubility and depuration rate, compared to BPMC and carbaryl. Therefore, carbofuran had no little bioconcentration effect on the aquatic ecosystem.
The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was 697 m3/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %.
The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.