The 300 concrete silo systems installed and operated at the site of Wolsong nuclear power plant (NPP) have been storing CANDU spent nuclear fuel (SNF) under dry conditions since 1992. The dry storage system must be operated safely until SNF is delivered to an interim storage facility or final repository located outside the NPP in accordance with the SNF management policy of the country. The silo dry storage system consists of a concrete structure, liner steel plate in the inner cavity, and fuel basket. Because the components of the silo system are exposed to high energy radiation owing to the high radioactivity of SNF inside, the effects of irradiation during long-term storage must be analyzed. To this end, material specimens of each component were manufactured and subjected to irradiation and strength tests, and mechanical characteristics before and after irradiation were examined. Notably, the mechanical characteristics of the main components of the silo system were affected by irradiation during the storage of spent fuel. The test results will be used to evaluate the long-term behavior of silo systems in the future.
PWR spent nuclear fuel generally showed an oxide film thickness of 100 um or more with a combustion rate of 45 MWD/MTU or higher, while CANDU spent nuclear fuel with an average combustion rate of about 7.8 MWD/MTU had few issues related to hydride corrosion. Even based on the actual power plant data, it is known that the thickness of the oxide film is 10 μm or less on the surface of the coating tube, and brittleness caused by hydride is shown from the thickness of the oxide film of about 80 μm, so it is not worth considering. However, since corrosion may be accelerated by lithium ions, lithium ions may be said to be a very important factor in controlling the hydro-chemical environment of heavy water. Lithium has a negative effect on the corrosion of zirconium alloys. However, since local below 5 ppb to prevent corrosion. maintained at a concentration between 0.35 and 0.55 ppm. Hydrogen is known to have a positive effect by suppressing radioactive decomposition of the coolant and suppressing cracks in nickelbased alloys. However, too much hydrogen can produce hydride in a pressure tube composed of Zr-2.5Nb, so DH (Disolved Hydrogen) maintains the range of 0.27–0.90 ppm. pH and conductivity are completely determined by lithium ions, and DH can be completely removed below 5 ppb to prevent corrosion. Therefore, for cladding corrosion simulation of the CANDU spent nuclear fuel, a hydrochemical of the equipment, not 310°C, and 14 uS·Cm−1 is targeted as conditions for corrosion acceleration. In addition, for acceleration, the temperature was set to 345°C (margin 10°C), which is the maximum accommodation range of the equipment, not 310°C.
본 연구에서는 최근 개발중인 360 다발 장전용량의 중수로 사용후핵연료 운반용기에 대한 설계기준연료의 방사선원항 평가와 용기외부에서의 방사선량률 계산을 수행하였다. 그리고 국·내외 방사선적 안전성평가와 관련한 기술기준 부합여부를 판단하고 결과의 적합성을 제시하였다. 방사선원항으로 작용하는 설계기준연료 선정을 위해 월성원전에서 운영중인 운반 용기 및 두 가지 방식의 건식저장시설에 적용된 설계기준연료의 사양 및 특성을 조사하였다. 각 운반·저장 시스템 별 설계 기준연료의 연소도, 최소 냉각기간 및 중간저장시설로의 운반시점 등을 바탕으로 연소도 7,800 MWD/MTU와 최소 냉각기 간 6년을 설계기준연료로 설정하였다. 설계기준연료의 방사선원항은 SCALE 전산코드의 ORIGEN-ARP모듈을 이용하여 평가하였다. 운반용기의 방사선차폐평가는 MCNP6 전산코드를 이용하였으며, 기술기준에서 요구하는 운반용기 외부에서의 방사선량률 평가를 정상 및 사고조건으로 구분하여 수행하였다. 방사선량률 평가결과, 정상운반조건의 운반용기 표면 및 운반용기 표면 2 m 이격지점에서 계산된 최대 방사선량률은 각각 0.330 mSv·h-1와 0.065 mSv·h-1로 도출되어 선량률 제한치인 2.0 mSv^hr-1와 0.1 mSv^hr-1를 모두 만족하는 결과를 도출하였다. 또한 운반사고조건하 운반용기 표면 1 m 지점에서의 최대 방사선량률은 0.321 mSv·h-1로서 기술기준인 10.0 mSv·h-1 미만으로 평가되어, 대용량 중수로 사용후핵연료 운반용기는 방사선적 안전성을 확보하는 것으로 나타났다.