검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.
        4,300원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.
        4,600원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed how the revenue water ratio(RWR) is affected by changes in conditions of the water supply area, such as the ratio of aging pipes, maintenance conditions, and revenue water. As a result of analyzing the impact of pipe aging and maintenance conditions on the RWR, it was confirmed that the RWR could be decreased if the pipe replacement project to improve the aging pipe ratio was not carried out and proper maintenance costs were not secured. It was also confirmed that an increase in the revenue water could be operated to facilitate the achievement of the project’s target RWR. In contrast, a decrease in the revenue water due to a population reduction could affect the failure of the target RWR. In addition to analyzing the causes of variation in the RWR, the calculation of estimated project costs was considered by using leakage reduction instead of RWR from recent RWR improvement project cost data. From this analysis, it was reviewed whether the project costs planned to achieve the target RWR of the RWR improvement project in A city were appropriate. In conclusion, the RWR could be affected by variations in the ratio of aging pipes, maintenance conditions, and revenue water, and it was reasonable to consider not only the construction input but also the input related to RWR improvement, such as leakage reduction, when calculating the project cost.
        4,800원
        5.
        2023.11 구독 인증기관·개인회원 무료
        In the 3rd revision of NUREG-0800, which was revised in 2007, the calculation method for decay heat in the design of the Ultimate Heat Sink (UHS) for a pressurized water reactor is recommended to be based on the ANSI/ANS-5.1 method. This method employs a more complex decay heat calculation formula compared to the one introduced in Branch Technical Position ASB 9-2, which was presented in the 2nd revision. While most of the variables for decay heat calculation in ANSI/ANS-5.1 can be inferred from the methods outlined in the appendices, determining the fractions of fission products is not straightforward despite their significant impact on the results. When reviewing documents that evaluate decay heat using the ANSI/ANS-5.1 method, it is observed that they often adopt a conservative approach by assuming that the fraction of the most influential fission product is 100%. In this study, the fractions of each fission product presented in LLNL’s 2016 report were used to calculate decay heat, and the results were compared with the ASB 9-2 method and ORIGEN code results. The comparison showed that ANS 5.1 tends to yield higher decay heat values than ANS 9-2, particularly at the reference time of 1M seconds, while ORIGEN-ARP generally produced lower values. Therefore, it is concluded that even when using the ANSI/ANS-5.1 method with the fractions of each fission product for decay heat calculations in spent nuclear fuel wet or dry storage facility assessments, it provides a sufficiently conservative thermal evaluation.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Korea Hydro & Nuclear Power (KHNP) is currently developing a vertical concrete dry storage module for the dry storage of used nuclear fuel within nuclear power plants. This module is designed with a structure consisting of cylinders, which can block the ingress of external air, thereby preventing Chloride-Induced Stress Corrosion Cracking (CISCC). However, due to the presence of these cylinder structures, unlike conventional dry storage systems, it cannot directly dissipate heat to the external atmosphere, making thermal evaluation an important issue. The SF dry storage module being developed by KHNP is a massive concrete structure of approximately 20 m × 10 m × 7 m in size, employing a vertical storage system. To demonstrate the safety of such a large structure, there is no alternative to conducting experiments with scaled-down models. Furthermore, according to NUREG-2215 Section 5.5.4, it is explicitly mentioned that design-verification testing can be performed using scaled-down models. In this paper, a 1/4 scaled-down model was constructed to perform thermal performance verification experiments, and the effectiveness of this model was analyzed using Computational Fluid Dynamics (CFD) methods. The analysis results indicated that there was not a significant difference in terms of maximum concrete temperature and air outlet temperature. However, a considerable difference was observed in the canister surface temperature. Therefore, it is concluded that careful consideration of natural convection heat transfer is necessary for the full application of the scaled-down model.
        7.
        2023.05 구독 인증기관·개인회원 무료
        South Korea has been storing UNF in spent fuel pool dry storage facility within Nuclear Power Plants. The dry storage facility of used nuclear fuel (UNF) is essential to sustain safety and sustain stable operation of a nuclear power plant. Most abroad countries have attempted to develop a variety of dry storage facility for used nuclear fuel in order to retain the safe restoration. Many studies have been conducting to safety evaluation for the dry storage facility. However, there is not a ventilation evaluation in the wake of fire event that could influence of the thermal effect on the dry storage facility, even though it will likely to occur fire events such as wildfire, air craft crash. In practice, it happened to catastrophic disaster due to the wild fire adjacent to ul-jin mountain. Also, it happened to fire accident near to the Japonia NPP in Ukraine territory caused of military air plane missile. It has not mostly been studied on the ventilation evaluation considered to thermal safety in the dry storage facility excepted for some researches. It could need the mechanical ventilation systems such as HVAC system in the dry storage system, so that thermal effect can be reduced. In this study, we conducted to the ventilation control modelling by using fire modelling tool (Fire Dynamic Simulator v.6.7). The ventilation scenarios made up for 3 case that can compare flowrate variation with ventilation control. As a result of modelling, there is no differentiation between ventilation control using performance curve with not using performance curve even though the pressure fluctuation would be increased, compared with the case of considering performance curve. Second, it evaluated that the mode for fraction control would occur to pressure rise in the state of controlling the ventilation system flowrate. However, sensitivity of flowrate control was more decreased below less than 5 seconds. Third, in the case of on/off control system revealed more higher resolution than other cases caused by flowrate variation. These results could be considered as the design guidelines for the development dry storage facility to improve the thermal performance that can reduce thermal risk. Furthermore, the study results would expect HVAC system installed in dry storage to help automatic ventilation control relevant to dry storage safety increased.
        8.
        2023.05 구독 인증기관·개인회원 무료
        The Comprehensive Analyzer of Real Estimation for spent fuel POOL (CAREPOOL) has been developed for evaluating the thermal safety of a spent nuclear fuel pool (SFP) during the normal and accident conditions. The management of spent nuclear fuel function provides a management tool for spent nuclear fuel in the SFP. The fuel assemblies both in SFP and reactor side can be shown graphically in the screen. The loading sequence into transfer cask can be checked respectively in the CAREPOOL. A basic heat balance equation was used to estimate the SFP temperature using the heat load calculated in the previous step. The characteristics of typical SFPs and associated cooling systems at reactor sites in the Korea were applied. Accident simulation like station black out leading to loss of SFP cooling or inventory is possible. Emergency cooling water injection pipe installed subsequent to the events at Fukushima 2011 is also modeled in this system. The CAREPOOL provides four main functions- management of spent nuclear fuel, decay heat calculation by ORIGEN-S code, estimation of the time to boil/fuel uncovering by thermal-hydraulics calculations, fuel selection for periodic spent fuel transferring campaign. All of these are integrated into the GUI based CAREPOOL system. The CAREPOOL would be very beneficial to nuclear power plant operator and trainee who have responsibility for the SFP operation.
        9.
        2023.05 구독 인증기관·개인회원 무료
        There have been a variety of issues related to spent nuclear fuel in Korea recently. Most of the issues are related to intermediate storage and disposal of spent nuclear fuel. However, recently, various studies have been started in advanced nuclear countries such as the United States to reduce spent nuclear fuel, focusing on measures to reduce spent nuclear fuel. In this study, a simple preliminary assessment of the thermal part was performed for the consolidation storage method which separates fuel rods from spent nuclear fuel and stores them. The preliminary thermal evaluation was analyzed separately for storing the spent fuel in fuel assembly state and separating the fuel rods and storing them. The consolidation storage method in separating the fuel rods was advantageous in terms of thermal conductivity. However, detailed evaluation should be performed considering heat transfer by convection and vessel shape when storing multiple fuel bundles simultaneously.
        10.
        2023.05 구독 인증기관·개인회원 무료
        As of 2023, there has been significant progress worldwide in the management of nuclear fuel’s spent radioactive waste (HLW). Several countries have made important strides in advancing their plans for the construction of deep geologic repositories (DGRs) to safely dispose of their nuclear waste. Finland led the way, with its nuclear waste management organization, Posiva Oy, submitting an application for an operating license for a DGR for spent fuel generated by the nuclear power plants of its owners. The facility, ONKALO, will be located on the island of Olkiluoto and is expected to begin final disposal in the mid-2020s. Sweden also approved SKB’s application to build a DGR in Forsmark, and an encapsulation plant next to the Clab interim storage facility. In Switzerland, Nagra selected Nordic Lagern as the site for the Swiss DGR, and is preparing the general license applications for the required facilities. Meanwhile, Canada’s Nuclear Waste Management Organization (NWMO) narrowed down the possible locations for its DGR to two, and expects to name its preferred site by fall 2024. The UK established four Community Partnerships to participate in the siting process for a DGR, with Nuclear Waste Services (NWS) responsible for identifying a site. Andra, the French organization responsible for managing all French radioactive waste, is expected to submit an application by the end of the year for a DGR in France that will contain HLW resulting from reprocessing of spent fuel assemblies from French nuclear power plants, as well as intermediate-level waste. Overall, the progress made by these countries represents a tangible and sustainable step forward in the management of spent fuel and HLW, and brings us closer to the safe and effective long-term disposal of nuclear waste.
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The water consumption data of individual consumers must be analyzed and forecast to establish an effective water demand management plan. A k-mean cluster model that can monitor water use characteristics based on hourly water consumption data measured using automated meter reading devices and demographic factors is developed in this study. In addition, the quantification model that can estimate the daily water consumption is developed. K-mean cluster analysis based on the four clusters shows that the average silhouette coefficient is 0.63, also the silhouette coefficients of each cluster exceed 0.60, thereby verifying the high reliability of the cluster analysis. Furthermore, the clusters are clearly classified based on water usage and water usage patterns. The correlation coefficients of four quantification models for estimating water consumption exceed 0.74, confirming that the models can accurately simulate the investigated demographic data. The statistical significance of the models is considered reasonable, hence, they are applicable to the actual field. Because the use of automated smart water meters has become increasingly popular in recent year, water consumption has been metered remotely in many areas. The proposed methodology and the results obtained in this study are expected to facilitate improvements in the usability of smart water meters in the future.
        5,100원
        14.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.
        4,800원
        19.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.
        4,200원
        20.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of 4.9 m3 yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.
        4,600원
        1 2