Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.
Three CNN (Convolutional Neural Network) models of GoogLeNet, VGGNet, and Alexnet were evaluated to select the best deep learning based image analysis mothod that can detect pavement distresses of pothole, spalling, and punchout on expressway. Education data was obtained using pavement surface images of 11,056km length taken by Gopro camera equipped with an expressway patrol car. Also, deep learning framework of Caffe developed by Berkeley Vision and Learning Center was evaluated to use the three CNN models with other frameworks of Tensorflow developed by Google, and CNTK developed by Microsoft. After determing the optimal CNN model applicable for the distress detection, the analyzed images and corresponding GPS locations, distress sizes (greater than distress length of 150mm), required repair material quantities are trasmitted to local maintenance office using LTE wireless communication system through ICT center in Korea Expressway Corporation. It was found out that the GoogLeNet, AlexNet, and VGG-16 models coupled with the Caffe framework can detect pavement distresses by accuracy of 93%, 86%, and 72%, respectively. In addition to four distress image groups of cracking, spalling, pothole, and punchout, 22 different image groups of lane marking, grooving, patching area, joint, and so on were finally classified to improve the distress detection rate.