검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Global warming and climate changes are the ultimate consequences of increased CO2 volume in the air. Physical activation was used to prepare high-throughput activated carbon from a low-cost date stone. The adsorption performance of activated carbon using fixed bed for CO2 separation was studied. The reliance of temperature, flow rate, and initial CO2 concentration levels on breakthrough behaviour was analysed. The adsorption response was explored in terms of breakthrough and saturation points, adsorption capacity, temperature profiles, utilization factor, and length of mass-transfer zone. Increased temperatures lead to vary the breakthrough periods notably. The vastly steep breakthrough curves reveal satisfactory utilization of bed capacity. LMTZ is varied positively with increased feed rates and temperatures. The high utilization factor of 0.9738 with 1.66 mmol/g CO2 uptake was acquired at 298 K and 0.25 bars. The findings recommend that the carbon prepared from date stone is encouraging to capture CO2 from CO2/ N2 mixture.
        4,300원
        2.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        This study analyzed on characteristics of the ground-water capture zone in coastal areas and mid-mountainous area according to pumping rate. For this study, it targeted Jejudo island where is the volcanic island. To analyze, MODFLOW model and MODPATH model, which are the ground-water flow analysis models, were used. As a result of research, the following conclusions could be obtained. As a result of analyzing influence of a change in pumping time upon length of capture zone, the length of capture zone in coastal area was indicated to be greater in the changing ratio compared to the length of capture zone in mid-mountainous area. Next, in the coastal area, the pumping rate and the capture-zone length are changing similarly. However, in mid-mountainous area, the length of capture zone was indicated to grow when the pumping rate comes to exceed 1,500m3/day. As a result of analyzing influence of a change in pumping time upon capture area, the tendency of a change in the area was indicated similarly in coastal areas and mid-mountainous area. Especially, it could be known that the larger pumping rate leads to the more definite increase in tendency to a change in capture area. Based on this study, it was allowed to be possibly used in the suitable pumping rate in coastal areas and mid-mountainous area of the volcano island in the future. A follow-up research is judged to necessarily analyze the influence of tubular-well group upon capture zone by additionally analyzing a change in capture zone targeting the concentrated tubular well.