An air cleaning unit(ACU) in a nuclear power plant plays a role on cooling the safety-related components whose function is involved in the reactor shutdown, and maintains the suitable temperature and humidity for work in the rooms where an operator is working on. To guarantee the performance of the unit the design of ACU should be subject to credible codes and standards, such as ASME, ANSI and ASHRAE, etc. On top of them, the desorption of the carbon adsorber is addressed in ASME N509 which causes the adsorber no longer to capture the iodine isotopes produced by the severe accident. In this study, the equations of the heat source were derived from the radioactive decay heat of each iodine isotopes. From the resultant equation, the maximum temperature below 300oF for the desorption was calculated under a proposed condition and analysed with the reference results.
The characteristics of filter/adsorber granular activated carbon (F/A GAC) were investigated by measuring various parameters, which include surface area, pore volume, abrasion number, floater, and water-soluble ash. The correlation between parameters was also evaluated. Moreover, rapid small-scale column test (RSSCT) was conducted for adsorption characteristics. Thirteen F/A GAC were tested, and the average values of abrasion number and water-soluble ash were 88.9 and 0.15%, respectively. F/A GAC with the larger external surface area and greater mesopore volume had the lower abrasion number, which indicated that it was worn out relatively easily. Water-soluble ash of coconut-based GAC (about 2.6%) was greater than that of coal-based GAC (less than 1%), and the pH of solution was increased with GAC, which had the higher water-soluble ash. On the other hand, floater of thirteen F/A GAC was divided as two groups, which one group had relatively higher floater (2.7~3.5%) and the other group had lower floater (approximately 0.5%). The results of RSSCT indicated that coconut-based GAC (i.e. relatively higher water-soluble ash) had less adsorption capacity. Moreover, adsorption capacity of coal-based GAC with larger surface area and greater mesopore volume was superior to others.