Wearable thermoelectric devices offer a transformative approach to energy harvesting, providing sustainable solutions for powering next-generation technologies. In pursuit of efficient, flexible, biocompatible, and cost-effective thermoelectric materials, zinc oxide (ZnO) has emerged as a distinctive candidate due to its unique combination of favorable properties. This study explores the growth and optimization of ZnO nanorods on conductive carbon fabric (CF) using a simple microwave-assisted solvothermal technique. This method circumvents traditional complex processes that typically involve high temperatures or lengthy growth times, offering advantages such as rapid, uniform, and controllable volumetric heating. By systematically varying growth parameters, including microwave power and reaction time, we established conditions that promote the vertical alignment of ZnO nanorods, essential for enhancing thermoelectric performance. Structural and morphological analyses highlight the pivotal influence of the seed layer and growth parameters in achieving dense, uniform growth of ZnO nanorods. Interestingly, at higher microwave power levels, a transformation from nanorod structures to sheetlike morphologies was observed, likely due to Ostwald ripening, where larger particles grow at the expense of smaller ones. The optimized growth conditions for achieving superior growth and thermoelectric performance were identified as 15 min of growth at 100 W microwave power. Under these conditions, ZnO nanorods exhibited enhanced crystallinity and a higher growth rate, contributing to an improved thermoelectric power factor of 777 nW/mK2 at 373 K. This work underscores the importance of precise parameter control in tailoring ZnO nanostructures for wearable thermoelectric applications and demonstrates the potential of scalable, low-cost methods to achieve high-performance energy-harvesting materials.
In the present work, multi-walled carbon nanotubes (MWCNT) were anchored with the assistance of vinyl ester resin (VE) on the carbon fiber surfaces of conventional carbon fabrics (CCF) and semi-spread carbon fabrics (SSCF) having different areal density, ply thickness, and crimp number, respectively. Here, MWCNT anchoring means that MWCNT were physically attached on the individual carbon fiber surfaces of each fabric by coating with dilute VE and then by thermally curing it. The MWCNT anchoring effect on the interlaminar shear strength (ILSS) of CCF/VE and SSCF/VE composites was investigated. MWCNT were also simply applied (without physical attachment) to the carbon fiber surfaces of CCF and SSCF for comparison, respectively. It was found that SSCF/VE composites exhibited the ILSS higher than CCF/VE composites, regardless of simple-applying or anchoring of MWCNT, increasing the ILSS with the MWCNT concentration. It was noted that MWCNT anchoring was effective to improve not only the interlaminar adhesion but also the interfacial bonding between the carbon fiber and the matrix due to the formation of MWCNT bridges between the individual carbon fibers of SSCF, indicating that the MWCNT anchoring effect was more pronounced with SSCF than with CCF. The result of the interlaminar property was well supported by the fiber and composite fracture topography.
최근 ICT 산업의 기술혁신이 일어남에 따라 생체신호을 인식하고 이에 대해 대응을 하기 위한 웨어러블 센싱 장치에 대한 수요가 증가하고 있다. 이에 따라 본 연구에서는 단순한 함침과정을 통해 3차원 스페이서(3D spacer)직물 을 단일벽 탄소나노튜브(SWCNT)분산용액에 함침공정을 진행해 단일층(monolayer) 압전 저항형 압력 센서 (piezoresistive pressure sensor)를 개발하였다. 3D 스페이서 원단에 전기전도성을 부여하기 위해 시료를 SWCNT 분 산용액에 함침공정을 진행한 후 건조하는 과정을 거쳤다. 함침된 시료의 전기적 특성을 파악하기 위해 UTM (Universal Testing Machine)과 멀티미터를 이용해서 압력의 변화에 따른 저항의 변화를 측정하였다. 또한 센서의 전기적 특성의 변화를 관찰하기 위해 분산용액의 농도, 함침횟수, 시료의 두께를 다르게 해서 시료의 센서로서의 성능을 평가했다. 그 결과 wt0.1%의 SWCNT 분산용액에 함침공정을 2번 진행한 시료가 센서로서 가장 뛰어난 성능 을 나타냄을 알 수 있었다. 두께별로는 7mm 두께의 센서가 가장 높은 GF를 보이고 13mm 두께의 센서가 작동범위가 가장 넓음을 확인했다. 본 연구를 통해 3D spacer 원단으로 제작한 스마트 텍스타일 센서는 공정과정이 단순하면서도 센서로서 성능이 뛰어나다는 장점을 확인할 수 있었다.
In this study, synthetic viscose rayon fabric has been used for preparing activated carbon fabric (ACF), impregnated with different concentrations of H3PO4. The effect of H3PO4 im-pregnation on the weight yield, surface area, pore volume, chemical composition and mor-phology of ACF were studied. Experimental results revealed that both Brunauer-Emmett-Teller surface area and micropore volume increased with increasing H3PO4 concentration; however, the weight yield and microporosity (%) decreased. It was observed that samples impregnated at 70°C (AC-70) give higher yield and higher microporosity as compared to 30°C (AC-30). The average pore size of the ACF also gradually increases from 18.2 to 19 and 16.7 to 20.4 Å for 30°C and 70°C, respectively. The pore size distribution of ACF was also studied. It is also concluded that the finalACF strength is dependent on the concentra-tion of impregnant.