The embryonic genome activation (EGA) is genetically activated states that embryos make the materials such as growth factors for using themselves. EGA is various because they have many materials, different site, different stage, also different species. At this time, transcription factors are expressed. Transcription factors bind to specific DNA region, and regulate the gene expression. Thus, we check the expression of transcription factors, we can know that embryo development is very well or not. The development stages of embryos are basically the stages from fertilization to blastocyst. So, we check the embryos oocyte to blastocyst. In our experiments, we focus the early developmental transcription factors such as Cdx2, Oct4, Sox2, Nanog and E-Cadherin. Above antibody factors showed different expression sites, and there were many differentiated parts from other animal species. In addition, we compared the SCNT and parthenogenetic activation (PA) because these are same methods using electrical activation among the embryo production methods. Our results showed not only similar patterns but also different patterns between pig and mouse. Therefore, we have to investigate that different patterns of transcription factors play a role in pigs, and why occur.
Abnormal development and fetal loss during the post‐implantation period are key concerns in the production of cloned animals by somatic cell nuclear transfer (SCNT). We hypothesized that the problems in cloned porcine offspring derived from SCNT are related to interactions between the conceptus and the endometrial environment. In the present study, we investigated expression patterns in the formation of placenta‐related genes (Cdx2 and GATA6) in whole in vivo normal porcine embryos (from single cell to blastocyst) and each tissue of a normal fetus at Days 25, 35 and 55 by quantitative mRNA expression analysis using real‐time PCR. The expression of Cdx2 and GATA6 mRNA increased to around the blastocyst stage. These genes were gradually decreased from the peri‐implantation to post‐implantation stage. Moreover, we examined the expression patterns of Cdx2 and GATA6 in Day 35 normal and SCNT cloned fetuses by the same methods. And, the level of Cdx2 and GATA6 gene expression in the extraembryonic tissue of SCNT was significantly higher than that of control tissues. From the present results, it can be postulated that the aberrant expression of Cdx2 and GATA6 genes in the endometrial and extraembryonic tissues at pre‐ and peri‐implantation stages may be closely related to the lower fficiency of animal cloning.