검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.10 구독 인증기관·개인회원 무료
        The gene (2,304-bp) encoding a novel xylanolytic enzyme (XylD) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylDΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg-1) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylDΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylDΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50 mM xylobiose.
        2.
        2011.05 구독 인증기관·개인회원 무료
        xylanolytic gut bacterium isolated from Eisenia fetida, Cellulosimicrobium sp. strain HY-13, produced an extracellular glycoside hydrolase capable of efficiently degrading mannose-based substrates such as locust bean gum (LBG), guar gum, mannotetraose, and mannopentaose. The purified mannan-degrading enzyme (ManS, 34,926 Da) from strain HY-13 was found to have an N-terminal amino acid sequence of DEATTDGLHVVDD, which has not yet been identified. Under the optimized reaction conditions of 50℃ and pH 7.0, ManK exhibited extraordinary high specific activities of 7,109 IU/mg and 5,158 IU/mg toward LBG and guar gum, respectively, while the enzyme showed no effect on sugars substituted with p-nitrophenol and various non-mannose carbohydrates. ManK strongly attached to Avicel, lignin, β-cyclodextrin, and poly(3-hydroxybutyrate) granules, but not bound to chitin, chitosan, curdlan, or insoluble oat spelt xylan. The aforementioned characteristics of ManS suggest that it is a unique endo-β -1,4-mannanase with out additional carbohydrolase activities, which differentiates it from other well-known carbohydrolases.