검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An optical fluorescence quenching sensor based on functionally modified iron-doped carbon nanoparticles was designed for the selective and sensitive Cr(VI) ion detection. Multifunctional iron-doped carbon nanoparticles were enclosed in the scaffolds of a promising stable nanocarrier system called hyperbranched polyglycerol (HPG), which has been fluorescently modified with 1-pyrene butyric acid using the Steglich esterification procedure. The therapeutic and diagnostic capabilities were boosted when these nanoparticles were enclosed in the fluorescently modified dendritic structure, HPG. Iron-doped carbon nanoparticles coupled with fluorescently modified hyperbranched polyglycerol can be used as a sensor for metal ions and can then be used to successfully remove them from a sample. Moreover, the synthesised nanoparticles demonstrated promising antimicrobial efficacy against bacteria and fungi. These results are also discussed in detail.
        4,900원
        4.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        In this study, to evaluate the transboundary movement of magnetite waste, the treatment causing possible oxidation and reduction to the highly toxic Cr (VI), as well as other chromium ions must be considered. In this study, we tried to remove chromium using magnetite. The efficiency of chromium removal using magnetite, mixing time, mixing speed, and temperature was evaluated through a jar test. In case of magnetite, the total chromium and hexavalent chromium concentration were rapidly decreased to 0.7 g and 0.35 g, respectively. For mixing speed, the removal efficiency of total chromium was rapidly increased to 150 rpm, but that of hexavalent chromium was almost unchanged. For reaction time, the chromium concentration was almost identical. At 70℃, the removal efficiency of total and hexavalent chromium was 97.2% and 98.8%, respectively; therefore, application of magnetite to actual industrial sites where high-temperature industrial wastewater is generated can be considered.
        5.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        The effect of temperature on the removal process of Cr(VI) ion contained in wastewater by a precipitation method has been investigated for the improvement of its design and operation. The distribution diagram of chromium ion was constructed by employing the MINTEQ program and the quantitative feature of Cr(VI) depending on pH was investigated. As the temperature increases, the relative amount of H2CrO4 was examined to be raised and the pH range in which H2CrO4 exists as a stable form was also investigated to be extended according to the temperature. Cr(VI) ion was shown to be changed from HCrO4 − to Cr2O7 2− as the concentration of Cr(VI) ion is increased in the neutral pH condition and the concentration of Cr(VI) ion which is necessary for the ionic transformation was observed to rise in the acidic and alkaline conditions. The major reactant which involved in the reduction reaction for the removal of Cr(VI) ion was examined to be HCrO4 − and the reduction of Cr(VI) ion to Cr(III) ion was investigated to be influenced much by the temperature change at higher pH conditions. The reduction reaction of Cr(VI) ion for its removal as a precipitate was examined to be promoted as the temperature decreases and pH is lowered. In addition, the stable region of Cr(OH)3 was shown to be enlarged with temperature based on the thermodynamic estimation and it was thought to be necessary to design and control the precipitating process of Cr(VI) ion by considering the thermal characteristics of reduction and precipitation stage.