This study addresses the critical challenge of enhancing vehicle classification accuracy in traffic surveys by optimizing the conditions for vehicle axle recognition through artificial intelligence. With current governmental traffic surveys facing issues—particularly the misclassification of freight vehicles in systems employing a 12-category vehicle classification—the research proposes an optimal imaging setup to improve axle recognition accuracy. Field data were acquired at busy intersections using specialized equipment, comparing two camera installation heights under fixed conditions. Analysis revealed that a shooting height of 8.5m combined with a 50°angle significantly reduces occlusion and captures comprehensive vehicle features, including the front, side, and upper views, which are essential for reliable deep learning-based classification. The proposed methodology integrates YOLOv8 for vehicle detection and a CNN-based Deep Sort algorithm for tracking, with image extraction occurring every three frames. The axle regions are then segmented and analyzed for inter-axle distances and patterns, enabling classification into 15 categories—including 12 vehicle types and additional classes such as pedestrians, motorcycles, and personal mobility devices. Experimental results, based on a dataset collected at a high-traffic point in Gwangju, South Korea, demonstrate that the optimized conditions yield an overall accuracy of 97.22% and a PR-Curve AUC of 0.88. Notably, the enhanced setup significantly improved the classification performance for complex vehicle types, such as 6-axle dump trucks and semi-trailers, which are prone to misclassification under lower installation heights. The study concludes that optimized imaging conditions combined with advanced deep learning algorithms for axle recognition can substantially improve vehicle classification accuracy. These findings have important implications for traffic management, infrastructure planning, road maintenance, and policy-making by providing a more reliable and precise basis for traffic data analysis.
수면단계는 수면감을 평가하는 데 있어서 중요한 생리지표로서 사용되어 왔다. 그러나 수면다원검사를 이용한 전통적 수면단계 분류방법은 뇌전도(electroencephalogram : EEG), 안전도(electrooculogram : EOG), 심전도(electrocardiogram : ECG), 근전도(electromyogram : EMG) 등을 종합적으로 측정하므로 수면단계를 비교적 정확히 분류할 수 있지만 피험자에게 심한 구속감을 주는 문제가 있다. 본 연구에서는, 각성상태에서 교감신경계가 지배적인 반면에 수면 중에는 부교감 신경계가 더 활동적인 점에 착안하여 수면단계를 간단히 분류할 수 있는 방법을 찾고자 수면단계에 따른 심박동변이도(heart rate variability : HRY)를 분석하였다. 이 실험에는 건강한 대학생 6명이 2일씩 전체 12회의 야간수면에 참여하였다. 수면다원검사 장치를 이용하여 피험자들이 수면을 취하고 있는 동안, EEG, EOG, ECG, EMG(턱 및 다리)를 측정하여 수면단계를 "Standard scoring system for sleep stage"에 따라 자동으로 분류하였다. 그런 뒤, 본 연구를 통하여 제작된 Sleep Data Acquisition/Analysis 시스템을 이용하여 수면다원검사 장치로부터 ECG신호만 추출하여 HRV의 전력스펙트럼을 3개의 영역[저주파수대역(low frequency : LF), 중간주파수대역(medium frequency : MF), 고주파수대역(high frequency : HF)]으로 나누어 분석하였다. 단일채널 ECG를 이용하여 수면단계별로 HRV의 LF/HF를 분석한 결과, W(wakefulness)단계가 2단계에 비하여 325%높게(p<.05), 3단계에 비하여 628%높게(p<.001), 4단계에 비하여 800%높게(p<.001) 나타났으며, 4단계는 REM(rapid eye movement)단계에 비하여 427% 낮게(p<.05), 1단계에 비하여 418% 낮게(p<.05) 나타났다. 또한 LF/HF가 수면단계에 따라 변화하는 양상은 W, REM, 1, 2, 3, 4단계의 순으로 단조 감소하였다. 한편, 수면단계별 MF/(LF+HF)의 차이는 유의하지 않았으나 표본집단의 기술통계치를 살펴본 바 REM단계와 3단계의 평균치가 가장 높았다.치가 가장 높았다.
본 연구의 목적은 기상자료(강수량, 최고기온, 최저기온, 평균기온, 평균풍속) 기반의 다중선형 회귀모형을 개발하여 농업용저수지 저수율을 예측 하는 것이다. 나이브 베이즈 분류를 활용하여 전국 1,559개의 저수지를 지리형태학적 제원(유효저수량, 수혜면적, 유역면적, 위도, 경도 및 한발빈도)을 기준으로 30개 군집으로 분류하였다. 각 군집별로, 기상청 기상자료와 한국농어촌공사 저수지 저수율의 13년(2002~2014) 자료를 활용하여 월별 회귀모형을 유도하였다. 저수율의 회귀모형은 결정계수(R2)가 0.76, Nash-Sutcliffe efficiency (NSE)가 0.73, 평균제곱근오차가 8.33%로 나타났다. 회귀모형은 2년(2015~2016) 기간의 기상청 3개월 기상전망자료인 GloSea5 (GS5)를 사용하여 평가되었다. 현재저수율과 평년저수율에 의해 산정되는 저수지 가뭄지수(Reservoir Drought Index, RDI)에 의한 ROC (Receiver Operating Characteristics) 분석의 적중률은 관측값을 이용한 회귀식에서 0.80과 GS5를 이용한 회귀식에서 0.73으로 나타났다. 본 연구의 결과를 이용해 미래 저수율을 전망하여 안정적인 미래 농업용수 공급에 대한 의사결정 자료로 사용할 수 있을 것이다.