Many industrial accidents have occurred continuously in the manufacturing industries, construction industries, and service industries of Korea. Fatal accidents have occurred most frequently in the construction industries of Korea. Especially, the trend analysis of the accident rate and fatal accident rate is very important in order to prevent industrial accidents in the construction industries systematically. This paper considers forecasting of the accident rate and fatal accident rate with static and dynamic time series analysis methods in the construction industries. Therefore, this paper describes the optimal accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM), and kalman filtering model (KFM) with existing accident data in construction industries. In this paper, microsoft foundation class (MFC) soft of Visual Studio 2008 was used to predict the accident rate and fatal accident rate. Zero Accident Program developed in this paper is defined as the predicted accident rate and fatal accident rate, the zero accident target time, and the zero accident time based on the achievement probability calculated rationally and practically. The minimum value for minimizing SSE in the construction industries was found in 0.1666 and 1.4579 in the accident rate and fatal accident rate, respectively. Accordingly, RAM and ARIMA model are ideally applied in the accident rate and fatal accident rate, respectively. Finally, the trend analysis of this paper provides decisive information in order to prevent industrial accidents in construction industries very systematically.
Entrepreneurship is considered as the main leadership creating enterprises and employment. However, in Korea empirical studies linking Korean entrepreneurial performances with her characteristics are rarely in existence. Current study focuses on Korean
The consequences of rapid industrial advancement, diversified types of business and unexpected industrial accidents have caused a lot of damage to many unspecified persons both in a human way and a material way Although various previous studies have been analyzed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. The main objective of this study is to find an optimal algorithm for data analysis of industrial accidents and this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and AnswerTree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work chosen from 19,574 data related to construction industries during three years (2002~2004) in Korea.
The establishment and application of risk management system is one of the current issues in world-wide leading companies. Poor risk management might bring large-scale accident in construction industry by its features(large scale, diversity). Standardization system and standard for risk should be managed timely. In this paper, we do comparative analysis of standardization systems and standards concerned on risk, so thus present basic data for safety reinforcement and risk zero in the construction life cycle process.