현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수문 설계 및 계획 시 중요한 입력자료 중 하나 는 시간단위 강우 자료로서 기후변화 시나리오에 따른 수자원 변동성을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단 위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 다수 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대 적으로 미진한 실정이다. 이러한 점에서 본 연구에서는 기후변화 시나리오에 따른 영향 평가가 가능한 자료생성을 위해 Conditional Copula 모형 을 활용하여 극치시간단위 강우량 상세화 기법을 개발하였으며, 미래 RCP 8.5 시나리오를 활용하여 연대별 극치시간강우량을 생성하였다. 생성 된 결과는 우리나라 기상청 지점별로 빈도해석을 통해 결과를 제시하였으며, 본 연구결과는 수자원 분야에서 미래 기후변화 영향을 평가하기 위한 기초자료로 활용 될 수 있을 것으로 기대된다.
본 연구에서는 가뭄빈도해석을 위해 이변량 확률분포함수를 적용하였으며, 가뭄 특성(가뭄 지속기간과 심도)의 상호 관계를 고려하여 지역적 가뭄특성을 종합적으로 판단하였다. 또한 단변량 가뭄해석의 한계점을 극복하기 위한 방안으로 이변량 가뭄해석을 수행하였으며, 이를 위해 코플라 함수를 적용하였다. 가뭄 발생의 확률 및 경향성을 종합적으로 나타내어 줄 수 있는 결합 확률밀도함수를 추정한 후, 지점별 가뭄빈도해석 및 과거 최대가뭄사상에 대한 단변량 및 이변량 재현기간을 산정하여 비교·분석하였다. 또한, 우리나라의 과거 최대가뭄사상에 대한 가뭄위험도분석을 위해, 연속되는 50년과 100년 동안 최소 한번 발생하는 확률(과거 최대가뭄사상 크기의 가뭄)을 강우관측지점별로 계산하여 가뭄위험지역을 예상하였다. 그러나 우리나라와 같이 강수자료의 기록연한이 짧은 경우에는 이변량 가뭄빈도해석을 수행하는 데 큰 불확실성을 야기할 가능성이 있다. 그러므로 가뭄해석 결과의 불확실성을 정량화시키기 위한 방안으로 강수모의기법을 활용하였으며, 그 결과 관측된 가뭄사상으로 추정된 이변량 가뭄빈도곡선에 대한 5%, 25%, 50%, 75%, 그리고 95%의 신뢰구간을 제시할 수 있었다. 또한 가뭄 지속기간과 심도의 95% 신뢰수준에 대한 이변량 가뭄재현기간의 경계값(상한값 및 하한값)을 추정하였다. 그 결과 불확실성의 원인은 가뭄빈도해석 시 고려되었던 두 변량에 대한 낮은 상관성으로 인해, 확률적인 방법으로 결합분포모형을 추정하는 데 있어 발생한 불확실성인 것으로 확인되었다.
확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중 3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이 사용됐으며 copula 모형은 Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을 바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.