Background: More women than men experience genu recurvatum, which can lead to knee pain and arthritis if left unattended. Pilates combined with taping is a suitable rehabilitation method for women with genu recurvatum.
Objectives: To aimed the effect of taping and Pilates stabilization exercise on physical alignment and improvement of genu recurvatum in women with genu recurvatum.
Design: A Randomized controlled trial.
Methods: Twenty-one women were divided into three groups: taping group (back of knee taping and quadriceps femoris taping, n=7), Pilates exercise group (hip, knee and abdominal muscles exercise, n=7), and combined group (taping with pilates exercise, n=7). The measured variables were sagittal plane alignment and back and abdominal muscle, knee flexor and extensor strength.
Results: After the intervention, all sagittal plane alignments were significantly improved in both the Pilates and combined groups. Sagittal plane alignment was significantly improved in the combined group compared with the taping group. Back and abdominal muscle strength were significantly improved in the Pilates and combined groups compared with the taping group. Knee flexor and extensor were significantly improved in the combined group compared with the Pilates group and in the Pilates group compared with the taping group.
Conclusion: Pilates exercise with taping or Pilates exercise alone was effective intervention methods to improve physical alignment and strength in women with genu recurvatum.
Background: We developed a novel integrative lumbar stabilization technique that combines lumbar extension (LE) exercise with abdominal drawing-in maneuver (ADIM) to ameliorate low back pain (LBP) associated with neuromuscular imbalance and instability, based on the collective evidence of contemporary spinal rehabilitation.
Objects: The specific aim of the present study was to investigate the effects of LE exercise with and without ADIM on core muscle strength, lumbar spinal instability, and pain, as well as functional characteristics in individuals with LBP using advanced radiographic imaging techniques.
Methods: patients with mechanical LBP (N = 40, 6 males; 35.1±7.6 years) were recruited and randomly assigned either to the combined LE and ADIM (experimental group) or the LE alone (control group). Outcome measures included the visual analog scale, the modified Oswestry Disability Index, muscle strength imbalance (MSI), and radiographic imaging. The lumbar intervertebral displacement (LID), intervertebral (IV) and total lumbar extension (TLE) angles were calculated to evaluate the lumbar segmental instability.
Results: The experimental group showed significant differences in the L3-L4, L5-S1 LIDs, L4-L5 and L5-S1 IV angles, and TLE angle as compared to the controls (p<.05). Immediate pain reduction and muscle strength imbalance ratio were significantly different between the groups (p<.05).
Conclusion: These results suggest that the addition of ADIM significantly increased lumbar spinal stabilization in individuals with LBP, thereby reducing pain associated with functional lumbar flexion during daily activities.
The aim of this study was to investigate the effect of supporting surface instability to trunk and lower extremity muscle activities during bridging exercise combined with core-stabilization exercise. Thirty young healthy adults (15 males and 15 females) voluntarily participated in this study. Each subject was asked to perform bridging exercise combined with core-stabilization exercise on three different supporting surfaces (stable ground surface, the wooden balancing board, and the air cushion). The muscle activities were measured using surface electromyography (EMG) during performing exercise. To test statistical significance, one-way ANOVA with repeated measures was used with the significance level of .05. The findings of this study are summarized as follows. (1) There were significant differences in muscle activities on internal oblique, external oblique, gluteus medius, semitendinosus, biceps femoris, medial gastrocnemius and lateral gastrocnemius during exercise (p<.05). (2) The biceps femoris and lateral gastrocnemius showed significantly higher muscle activity on the wooden balancing board rather than on the ground, and semitendinosus, biceps femoris, medial gastrocnemius and lateral gastrocnemius showed significantly higher muscle activity on the air cushion rather than on the ground (p<.05). Therefore, it is concluded that muscle activities in the trunk and the lower limbs during bridging exercise combined with core-stabilization exercise was affected with instability of supporting surface. Further researches are needed to investigate the long term effect of bridging exercise on muscle activity with patient group.