Activated carbon (AC) is a versatile and extensively employed adsorbent in environmental remediation. It possesses distinct properties that can be enhanced to selectively target specific pollutants through modifications, including chemical impregnation or incorporation into composite materials. In this study, porous calcium alginate beads (PCAB) were synthesized by incorporating AC and natural alginate through ion gelation in a Ca(II) ion-containing solution, with the addition of sodium lauryl sulfate as a surfactant. The prepared PCAB was tested for Cu(II) removal. PCAB exhibited a spherical shape with higher porosity and surface area (160.19 m2. g−1) compared to calcium alginate beads (CAB) (0.04 m2. g−1). The adsorption kinetics followed the pseudo-first-order model for PCAB and the pseudo-second-order model for CAB. The Langmuir isotherm model provided the best fit for adsorption on PCAB, while the Freundlich model was suitable for CAB. Notably, PCAB demonstrated a maximum adsorption capacity of 75.54 mg.g−1, significantly higher than CAB's capacity of 9.16 mg. g−1. Desorption studies demonstrated that 0.1 M CaCl2 exhibited the highest efficiency (90%) in desorbing Cu(II) ions from PCAB, followed by 0.1 M HCl and 0.1 M NaCl. PCAB showed efficient reusability for up to four consecutive adsorption– desorption cycles. The fixed-bed column experiment confirmed the match with the Thomas model to the breakthrough curves with qTH of 120.12 mg.g−1 and 68.03 mg.g−1 at a flow rate of 1 mL.min−1 and 2 mL.min−1, respectively. This study indicated that PCAB could be an effective adsorbent for Cu(II) removal, offering insights for further application and design considerations.
Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.