Molten salt solutions consisting of eutectic LiCl-KCl and concentrations of samarium chloride (0.5 to 3.0 wt%) at 500℃ were analyzed using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV technique gave the average diffusion coefficient for Sm3+ over the concentration range. Equipped with Sm3+ diffusion coefficient, the Randles-Sevcik equation predicted Sm3+ concentration values that agree with the given experimental values. From CV measurements; the anodic, cathodic, and half-peak potentials were identified and subsequently used as a parameter to acquire EIS spectra. A six-element Voigt model was used to model the EIS data in terms of resistance-time constant pairs. The lowest resistances were observed at the half-peak potential with the associated resistance-time constant pairs characterizing the reversible reaction between Sm3+ and Sm2+. By extrapolation, the Voigt model estimated the polarization resistance and established a polarization resistance-concentration relationship.
전형적인 3-전극 시스템의 순환전압전류법을 사용하여 알킬기를 가진 에탄올아민 용액 중에서 스테인리스에 대한 전류-전압 곡선을 측정하였다. 스테인리스는 작업 전극으로, Ag/AgCl 전극은 기준 전극으로, 그리고 백금선은 상대 전극으로 각각 사용하였다. N-에틸에탄올아민과 N,N-디메틸에탄올아민 용액에서의 스테인리스의 C-V특성은 순환전압전류법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 부식억제제의 확산계수의 효과는 각각 농도 증가에 따라 감소하였다. 금속의 SEM 이미지로부터 0.5 N의 전해질에서 부식억제제인 N,N-디에틸에탄올아민 (1.0 × 10-³ M)을 첨가한 경우, 구리와 니켈에서 부식억제 효과가 향상되었다.
Chalcopyrite CuInSe2(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solarcells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at roomtemperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. Acyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternaryCu-In-Se system. The reduction peaks of the ITO substrate were examined in separate Cu2+, In3+, and Se4+ solutions.Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. Themorphological and compositional properties of the CIS thin films were examined by field emission scanning electronmicroscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibitsspherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size,such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at −0.6Vnearly approached the stoichiometric ratio of CuIn0.8Se1.8. The growth potential plays an important role in controlling thestoichiometry of CIS films.
The electrochemical analysis of silver ion was performed using cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry, and electrode cell systems were fabricated with graphite pencil electrode (GE) of working, reference and counter electrodes. Also electrolyte was the use of sea water as electrolyte solutions instead of ionic controlled solutions. The optimum analytical conditions for the cyclic and stripping parameters were determined using GE. The results approached the microgram working ranges of SW(ug/L) and CV(ug/L) Ag, and the optimum conditions were applied to frog's tissue and the food samples.