검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 불특정 다수의 도로이용자들이 경로우회 시 갖는 의사결정과정속에 내포된 비선형성과 불확실성을 고려한 정도 있는 모형구축으로 주요 우회결정요인을 분석하는 것이 주요 목적이다. 이를 위하여 고속도로 및 국도를 이용하는 운전자를 대상으로 우회여부에 관련된 SP조사를 실시하였고, 조사결과에 대하여 의사결정나무와 신경망이론의 결합된 모형을 구축하여 운전자 우회결정요인을 분석하였다. 분석결과 운전자 우회여부결정에 영향을 미치는 요인은 우회도로 인지여부, 교통정보 신뢰도 및 이용빈도, 경로전환빈도, 나이순으로 나타났다. 또한 오분류표를 통한 기존 모형과의 예측력의 비교결과 결합된 모형의 오분류율이 8.7%로 기존 모형인 로짓모형 12.8%, 의사결정나무 단독 모형 13.8%와 비교했을 때 가장 예측력이 높은 것으로 나타나 운전자 우회결정요인 분석에 관한 모형의 적용 타당성을 확인할 수 있었다. 본 연구의 결과는 향후 교통량 분산효과와 도로망 효율 증대를 위한 효과적인 우회관리전략 수립 시 기초 자료로 활용가능하리라 사료된다.
        4,000원
        2.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The consequences of rapid industrial advancement, diversified types of business and unexpected industrial accidents have caused a lot of damage to many unspecified persons both in a human way and a material way Although various previous studies have been analyzed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. The main objective of this study is to find an optimal algorithm for data analysis of industrial accidents and this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and AnswerTree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work chosen from 19,574 data related to construction industries during three years (2002~2004) in Korea.
        4,000원
        3.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.
        5,400원
        4.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        Since prolonged exposure to elevated ozone (O3) concentrations is known to be harmful to human health, appropriate control strategies for ozone are needed for the non-attainment area such as Seoul, Korea. The goal of this research is to assess factors linked with the 1-hour ozone exceedance through a decision tree model. Since ozone is a secondary pollutant, lag times between ozone and explanatory variables for ozone formation are taken into account in the model to improve the accuracy of the simulation. Results show that while ozone concentrations of the previous day and NO2 concentrations in the morning are major drivers for ozone exceedances in the early afternoon, meteorology plays more important role for ozone exceedances in the late afternoon. Results also show that a selection of lag times between ozone and explanatory variables affect the accuracy of predicting 1-hour ozone exceedances. The result analyzed in this study can be used for developing control strategies of ozone in Seoul, Korea.
        5.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 결정트리 학습 알고리즘을 활용한 축구 게임 수비 NPC 제어 방법을 제안한다. 제안하는 방법은 실제 게임 사용자들의 이동 방향 패턴과 행동 패턴을 추출하여 결정트리학습 알고리즘에 적용한다. 그리고 학습된 결정트리를 바탕으로 NPC의 이동방향과 행동을 결정한다. 실험결과 제안하는 방법은 결정트리 학습에 시간이 다소 걸리지만, 학습된 결정트리를 바탕으로 이동방향이나 행동을 결정하는 시간은 약 0.001-0.003 ms(밀리초)가 소요되어 실시간으로 NPC를 제어할 수 있었다. 또한, 제안하는 방법은 현재 상태 정보 뿐만 아니라 이를 분석한 관계정보, 이전 상태 정보도 함께 활용하므로, 기존방법인 (Letia98)에 비해 이동방향 결정시 높은 정확도를 나타냈다.