검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 187

        61.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In ‘offset printing’ mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called ‘spot color’ ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through ‘Delta E’ provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.
        4,000원
        62.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        요통을 호소하는 환자에서의 자기공명영상 검사는 다른 영상 진단법에 비해 요추와 주변 조직에 대한 높은 대조도와 해상력, 다양한 영상면의 획득으로 해부학적 구조 파악과 다양한 척추 질환의 진단에 널리 활용되고 있다. 그러나 자기공명 영상 검사는 검사 시간이 길기 때문에 통증으로 협조가 되지 않는 환자들에게서 움직임에 의한 인공물을 유발하는 경우가 많아 검사 시간을 최소화하는 것이 중요하다. 이에 자기공명영상 검사 시간 단축을 위한 다양한 기법들이 개발되어 왔으며, 최근 높은 영상의 질을 유지하면서 검사 시간은 크게 줄이는 K-공간 기반 딥 러닝(K-space based Deep Learning, DL) 기법이 주목받고 있다. 본 연구는 요추 자기공명영상 검사에서 DL 기법의 유용성을 알아보기 위해 본원을 내원하여 척추 질환이 의심되는 환자를 대상으로 DL 기법 적용 전후 시상면 T2 강조 영상과 축상면 T2 강조 영상을 각각 획득하였으며, 신호대잡음비와 대조대잡음비, 영상 획득 시간, 전체적인 영상의 질 및 병변 진단 일치도를 비교 분석하였다. 연구 결과 영상의 질 향상과 검사 시간의 단축뿐만 아니라 빠른 영상 획득으로 움직임이나 호흡에 의한 인공물 또한 감소하는 것을 볼 수 있었다. 따라서 자기공명영상 검사에서 DL 기법 사용 시 진단적 가치가 보다 높은 영상을 제공하는 동시에 환자의 만족도를 높여 임상에서도 유용한 방법이 될 것으로 사료된다.
        4,000원
        63.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 딥러닝 알고리즘을 이용하여 딸기 영상 데이터의 병충해 존재 여부를 자동으로 검출할 수 있는 서비스 모델을 제안한다. 또한 병징에 특화된 분할 이미지 데이터 세트를 제 안하여 딥러닝 모델의 병충해 검출 성능을 향상한다. 딥러닝모델은 CNN 기반 YOLO를 선정하여 기존의 R-CNN 기반 모델의 느린 학습속도와 추론속도를 개선하였다. 병충해 검 출 모델을 학습하기 위해 일반적인 데이터 세트와 제안하는 분할 이미지 데이터 세트를 구축하였다. 딥러닝 모델이 일반 적인 학습 데이터 세트를 학습했을 때 병충해 검출률은 81.35%이며 병충해 검출 신뢰도는 73.35%이다. 반면 딥러닝 모델이 분할 이미지 학습 데이터 세트를 학습했을 때 병충해 검출률은 91.93%이며 병충해 검출 신뢰도는 83.41%이다. 따 라서 분할 이미지 데이터를 학습한 딥러닝 모델의 성능이 우 수하다는 것을 증명할 수 있었다.
        4,000원
        65.
        2022.05 구독 인증기관·개인회원 무료
        It is important to ensure worker’s safety from radiation hazard in decommissioning site. Real-time tracking of worker’s location is one of the factors necessary to detect radiation hazard in advance. In this study, the integrated algorithm for worker tracking has been developed to ensure the safety of workers. There are three essential techniques needed to track worker’s location, which are object detection, object tracking, and estimating location (stereo vision). Above all, object detection performance is most important factor in this study because the performance of tracking and estimating location is depended on worker detection level. YOLO (You Only Look Once version 5) model capable of real-time object detection was applied for worker detection. Among the various YOLO models, a model specialized for person detection was considered to maximize performance. This model showed good performance for distinguishing and detecting workers in various occlusion situations that are difficult to detect correctly. Deep SORT (Simple Online and Realtime Tracking) algorithm which uses deep learning technique has been considered for object tracking. Deep SORT is an algorithm that supplements the existing SORT method by utilizing the appearance information based on deep learning. It showed good tracking performance in the various occlusion situations. The last step is to estimate worker’s location (x-y-z coordinates). The stereo vision technique has been considered to estimate location. It predicts xyz location using two images obtained from stereo camera like human eyes. Two images are obtained from stereo camera and these images are rectified based on camera calibration information in the integrated algorithm. And then workers are detected from the two rectified images and the Deep SORT tracks workers based on worker’s position and appearance between previous frames and current frames. Two points of workers having same ID in two rectified images give xzy information by calculating depth estimation of stereo vision. The integrated algorithm developed in this study showed sufficient possibility to track workers in real time. It also showed fast speed to enable real-time application, showing about 0.08 sec per two frames to detect workers on a laptop with high-performance GPU (RTX 3080 laptop version). Therefore, it is expected that this algorithm can be sufficiently used to track workers in real decommissioning site by performing additional parameter optimization.
        67.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Along with the current rapid development of technology, object classification is being researched, developed, and applied to security systems, autonomous driving, and other applications. A common technique is to use vision cameras to collect data of objects in the surrounding environment. Along with many other methods, LiDAR sensors are being used to collect data in space to detect and classify objects. By using the LiDAR sensors, some disadvantages of image sensors with the negative influence on the image quality by weather and light condition will be covered. In this study, a volumetric image descriptor in 3D shape is developed to handle 3D object data in the urban environment obtained from LiDAR sensors, and convert it into image data before using deep learning algorithms in the process of object classification. The study showed the potential possibility of the proposal and its further application.
        4,000원
        68.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 진해만의 DO 농도 재현을 목표로 LSTM 모형의 최적 매개변수 조건과 예측변수를 선별하기 위한 Case study를 진행하였다. 모형 매개변수 Case study 결과, 가장 적은 Hidden node와 Epoch인 Hidden node=10, Epoch=100에서 가장 낮은 정확도를 보였다. 이는 모형이 과소적합(Underfitting) 상태인 것으로 판단된다. Hidden node=80, Epoch=1200에서 R2 값은 0.99로 가장 높은 정확도를 보였다. 예 측변수 Case study 결과, 1개의 환경변수만을 예측변수로 사용한 Step 1에서 수온을 예측변수로 했을 때 저층 DO 농도 재현의 R2 값은 0.81 로 가장 높은 정확도를 보였다. 이후 2개의 환경변수를 사용한 Step 2에서는 수온과 SiO2를 예측변수로 했을 때 R2 값은 0.92로 수온만 사 용했을 때보다 정확도가 급격히 증가하였다. 이는 저층 DO 농도와 SiO2 농도간의 높은 상관성(=0.70)에 기인한 것으로 판단된다. 상기 결과로부터 진해만의 DO 농도 재현에 적합한 LSTM 모형의 매개변수와 예측변수를 찾을 수 있었다.
        4,000원
        71.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rapid development of computer vision and deep learning has enabled these technologies to be applied to the automated classification and counting of microscope images, thereby relieving of some burden from pathologists in terms of performing tedious microscopic examination for analysis of a large number of slides for pathological lesions. Recently, the use of these digital methods has expanded into the field of medical image analysis. In this study, the Inception-v3 deep learning model was used for classification of chondrocytes from knee joints of rats. Knee joints were extracted, fixed in neutral buffered formalin, decalcified, processed and embedded in paraffin, and hematoxylin and eosin (H&E) stained. The H&E stained slides were converted into whole slide imaging (WSI), and the images were cropped to 79 × 79 pixels. The images were divided into training (60.42%) and test (39.58%) sets (46,349 and 30,360 images, respectively). Then, images containing chondrocytes were classified by Inception-v3 and accuracy was calculated. We visualized the images containing chondrocytes in WSIs by adding colored dots to patches. When images of chondrocytes in knee joints were evaluated, the accuracy was within the range of 91.20 ± 8.43%. Therefore, it is considered that the Inception-v3 deep learning model was able to distinguish chondrocytes from non-chondrocytes in knee joints of rats with a relatively high accuracy. The above results taken together confirmed that this deep learning model could classify the chondrocytes and this promising approach will provide pathologists a fast and accurate analysis of diverse tissue structures.
        4,000원
        72.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).
        4,000원
        73.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.
        4,000원
        75.
        2021.11 구독 인증기관 무료, 개인회원 유료
        Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation.
        4,000원
        1 2 3 4 5