검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Petroleum energy is the major source of the world energy market, and its massive usage, and the corresponding extreme environmental pollution, imposes a serious threat on the ecological cycles. By screening oil-contaminated soil, we isolated, identified, and characterized a novel strain that represents a considerable diesel-degrading potentiality; the Bacillus aryabhattai DA2 strain is registered in the NCBI with the accession number MG571630, and it possesses an efficient tributyrin-degrading capacity. The optimal condition for diesel degradation by DA2 strain was observed at pH between 7-8 and at the temperature of 30°C. The strain is resistant to salt as well as the antibiotics like ampicillin and streptomycin. These results indicate B. aryabhattai is one of the potential candidates for the remediation of the diesel-contaminated sites.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The petroleum industry is an important part of the world economy. However, the massive exposure of petroleum in nature is a major cause of environmental pollution. Therefore, the microbial mediated biodegradation of petroleum residues is an emerging scientific approach used to resolve these problem. Through the screening of diesel contaminated soil we isolated a rapid phenanthrene and a diesel degrading bacterium identified as Enterobacter cancerogenus DA1 strain through 16S rRNA gene sequence analysis. The strain was registered in NCBI with an accession number MG270576. The optimal growth condition of the DA1 strain was determined at pH 8 and 35°C, and the highest degradation rate of the diesel was achieved at this condition. At the optimal condition, growth of the strain on the medium containing 0.05% phenanthrene and 0.1% of diesel-fuel was highest at 45 h and 60 h respectively after the incubation period. Biofilm formation was found significantly higher at 35°C as compared to 30°C and 40°C. Likewise, the lipase activity was found significantly higher at 48 h after the incubation compared to 24 h and 72 h. These results suggest that the Enterobacter cancerogenus DA1 could be an efficient candidate, for application through ecofriendly scientific approach, for the biodegradation of petroleum products like diesel.
        4,000원
        3.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        Ultrasound and Surfactant aided soil washing process has been shown to be an effective method to remove diesel from soils. The use of surfactants can improve the mobility of diesel in soil-water systems by increasing solubility of adsorbed diesel into surfactant micelles. However, a large amount of surfactant is required for treatment. In addition, synthetic surfactants, specially anionic, are more toxic and the surfactant wastewater is hard to treat by conventional wastewater treatments even by AOPs. Ultrasound improves desorption of the diesel adsorbed on to soil. The mechanisms are based on physical breakage of bonds by hot spot, directly impact onto soil particle surface, the fragmentation of long-chain hydrocarbons by micro-jet and microstreaming in the soil pores. The use of ultrasound as an enhancement method in both anionic and nonionic surfactant aided soil-washing processes were studied. And all experiments were examined proceeded under CMC surfactant concentration, frequency 35 khz, power 400 W, Soil-water ratio 1:3(wt%), particle size 0.24 ~ 2mm and initial diesel concentration. 20,000 mg/kg. Combination with ultrasound showed significant enhancements on all the processes. Especially, nonionic surfactant Triton-X100 with ultrasound showed remarkable enhancements and diesel removal rate enhanced by ultrasound helps desorpting of surfactant adsorbed onto soils which prevented decreasing surfactant activity.
        4.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        The application of microwave technology has been investigated in the remediation of diesel-contaminated soil. The paper deals with economic assessment by means of cost analysis and degradation characteristics at different microwave powers for total petroleum hydrocarbon (TPH) in diesel contaminated soils. The soils from S Mountain around the D University were sampled. The samples were screened with 2.0 mm mesh and dried for 6 hours before the diesel was added into the dried soils. The diesel-contaminated soil (3,300 mg THP/kg soil) was prepared with diesel (S Co.). The drying process was carried out in a microwave oven, a standard household appliance with a 2,450 MHz frequency and 700 W of power. The experiments were conducted from 0 to 20 minutes as the microwave powers increased from 350W to 500W to 700W. The concentrations of TPH were analysed using a gas chromatography/mass spectrometer (GC/MS). The initial concentration of TPH was 3,300 mg TPH/kg soil. The weight of contaminated soil was 200g. The concentration of TPH was decreased to 1,828 mg TPH/kg soil (44.7%), 1,347 mg TPH/kg soil (59.2%) and 1,014 mg TPH/kg soil (69.3%) at 350W, 500W and 700W for 15 minutes respectively. In addition, the curve was best fit with first order kinetics using the least-square method. The ranges of a first order rate constant k and r-square were 0.0298~0.0375min-1 and 0.9373~0.9541 respectively.