Nuclear power is responsible for a large portion of electricity generation worldwide, and various studies are underway, including the design of permanent deep geological disposal facilities to safely isolate spent nuclear fuel generated as a result. However, through the gradual development of drilling technology, various disposal option concepts are being studied in addition to deep geological disposal, which is considered the safest in the world. So other efforts are also being made to reduce the disposal area and achieve economic feasibility, which requires procedures to appropriately match the waste forms generated from separation process of spent nuclear fuel with disposal option systems according to their characteristics. And safety issue of individual disposal options is performed through comparison of nuclide transport. This study briefly introduces the pre-disposal nuclide management process and waste forms, and also introduces the characteristics of potential disposal options other than deep geological disposal. And environmental conditions and possible pathways for nuclide migration are reviewed to establish transport scenarios for each disposal option. As such, under this comprehensive understanding, this study finally seeks to explore various management methods for high-level radioactive waste to reduce the environmental burden.
Korea Atomic Energy Research Institute (KAERI) has investigated Pyroprocessing technology in order to decrease the burden of disposal system and increase availability of useful radionuclides in the spent nuclear fuel (SNF) for future. The treatment and the disposal of SNF, however, are very sensitive issues socially. In addition, under the energy transition policy phasing out nuclear energy gradually there have been demands for alternatives so far. Thus various alternatives should need to be investigated in preparation for unexpected situations. This study has been conducted roughly in effectiveness point of view of alternative pre-managements for SNF, not pyroprocessing technology, in disposal system, consisting of three stages according to the degree of burden in disposal system. Stage I is the case for making safety increase with removing highly-mobile radionuclides from SNF. Stage II is the case for eliminating high-heat radionuclides additionally, alleviating thermal risk in the disposal system. And Stage III is the case for recovering Uranium in addition to Stage II. These options of pre-management are thought to be able to provide an intuitive strategy for effective diversification of the disposal system. Because several types of waste form from pre-management make it possible to develop the effective, newly-composed waste disposal system according to the properties of radionuclides. And the processability of SNF through pre-management might be combination with available core-drilling technology, being able to design various disposal system as well. Even though the whole, detailed unit processes have not designed yet, mass balance and distributions of radionuclides are performed under the appropriate assumption of engineering processes. As a first step the alternative approaches for SNF pre-management for disposal system might be expected to be widely used in implementing SNF management policy in the future.