검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.05 구독 인증기관·개인회원 무료
        The airport concrete pavement is gradually changing from the empirical design method proposed by the FAA to the mechanical design method. However, the complete mechanical design method has not yet been developed because it is difficult to consider designing due to various break types due to environmental load. FAAFIELD, a widely used finite element analysis program in existing airport pavement design, has yet to be considered for environment loads, although it has been continuously updated. Therefore, this study used ABAQUS instead of FAARFIELD as a finite element analysis program to consider the environmental load, and carried out the load quantification work of A380 aircraft and B777 aircraft corresponding to 3DT(3 Dual Tandem) gear. The traffic load information of 3DT gear aircraft was collected, and the environmental load due to temperature and humidity was converted into the equivalent linear temperature difference. Through the finite element analysis using ABAQUS, the prediction data of maximum tensile stress and location was collected when the two loads act to slab simultaneously. The factors affecting the maximum tensile stress in the finite element analysis are slab thickness, joint spacing, aircraft load, combined bearing capacity, and equivalent linear temperature difference, respectively. In order to examine the adequacy of the selected factors, sensitivity analysis for factors which affect maximum tensile stress was performed, and the stress regression model was developed. For this, a multiple regression analysis program SPSS was used and the stress regression equations for 3DT gear aircraft were calculated considering traffic and environmental loads. Through the developed stress regression model, it is possible perform the load quantification process of the 3DT gear aircraft for the mechanical design of the airport concrete pavement. In addition, the appropriateness of the regression model is verified by securing the high decision coefficient through SPSS. This study was supported by Incheon International Airport Corporation(BEX00625)
        2.
        2018.05 구독 인증기관·개인회원 무료
        Conventional airport concrete pavement design uses empirical design method presented by FAA but it is not accurate because it does not consider environment load. In case of mechanistic - empirical design method used overseas, it needs to be modified according to domestic conditions. In this paper, a stress regression model considering environmental load and dual tandem gear load is developed as a mechanical - empirical design process and verified by fatigue model calibration. First of all, literature review was conducted on airports using DT gear as a design aircraft among domestic airports, and the physical properties of concrete pavement layers of each airport were identified. In addition, the environmental load is divided into the temperature load and the moisture load, and the temperature load is calculated from the climatic data of the region where the domestic airport is located, and the moisture load is calculated through the drying shrinkage prediction model developed through the previous study. The stresses occurring in concrete slabs under environmental loads and traffic loads were predicted using FEAFAA, which is a finite element analysis program, and factors predicted to affect concrete pavement were selected for the stress regression.As a result of the sensitivity analysis of the selected factors, the joint spacing, slab thickness, gear load, and road bearing capacity coefficient affected the stress behavior of the slab by more than 5% of the reference stress.According to the mechanical design, the finite element analysis was carried out for the consideration of only the traffic load and the environmental load and the traffic load based on the design factors. Based on the analysis results, multiple regression analysis was performed using the statistical analysis program SPSS and the stress regression equation was calculated. Then, the stress model for the environmental load and the traffic load was calculated and the final stress model with each stress model as the independent variable was derived. Using the calculated stress regression model, the stress was calculated and the bending strength of the concrete was divided to calculate the stress - to - strength ratio, and the appropriate fatigue model was selected and the correction was performed by the least squares method. This study was supported by Incheon International Airport Corporation(BEX00625)