A retractable bollard system has been used for the traffic control and protection of important facilities such as electric power plants, airports and government buildings etc. The power source of the driving unit of the conventional protective bollard system is on hydraulic or pneumatic system which has several disadvantages compared to an electric driven unit.
In this research, an electric driven unit for an automatic retractable bollard is designed and developed to replace the conventional hydraulic and pneumatic driven type. For the reliability test of the developed electric driven unit, a field test has been successfully done.
A case study was conducted to develop a defensive retractive bollard which the target performance is 9sec. and 7sec. on its raising and descending operation speed respectively with 750mm in stroke. The required time limit was fully satisfied as the time measured from the experiment were 7.5sec and 5.5sec for each operation. The developed unit also passed 364,000 cycles of operation without any serious malfunctions at the load test proving its reliability.
The design theory and process of an electric driven unit of the automatic retractable bollard presented in this article is believed to be very useful contribution and design tool in advancing the physical security industry.
This study is about the development of remote controlled bollard using the BLDC motor and ball screw with mechatronics theory. A bollard is composed of the sensor part and the control part. The sensor part is consisted of sensors that detect the locations of a bollard. The role of the control part is adjusting motor speed and power through variable resistance. In order to confirm required performance, the speed of decent and ascent of the bollard, the time and the RPM of BLDC motor were tested according to the variable resistance and the applied load with 10 to 72kgf.