소셜 미디어의 급속한 발달로 인해 사용자가 생성한 텍스트 데이터가 급증하고 있다. 오피니언 마이닝에서는 이러한 사용자의 텍스트를 분석하여 사용자의 의견을 추출하고 있다. 특히 오피니언 마이닝의 세부 분야인 정서분석에서는 텍스트에서 사용자의 정서를 추출하는 것이 주된 목적인데, 이를 위해서는 정서 단어 목록 구축이 필수적이다. 본 논문에서는 소셜 미디어의 정서 분석을 위해서 대표적인 소셜 미디어인 페이스북 텍스트를 사용하여 정서 단어 목록을 구축하였다. 페이스북 텍스트로부터 데이터를 수집한 후 정서 단어를 선별하고 설문을 통하여 정서가와 활성화 차원을 측정하였다. 그 결과 정서가, 활성화 차원을 포함한 267개 정서 단어 목록을 구축하였다.
최근에 사용자에 의한 대량의 텍스트 데이터가 발생하면서 사용자의 정보, 의견 등을 분석하는 오피니언 마이닝이 중요하게 부각되고 있다. 오피니언 마이닝 중 특히 정서 분석은 제품, 사회적 이슈, 정치인에 대한 호감 등에 대한 개인적 의견이나 정서를 분석하여 긍정, 부정이나 행복, 슬픔 등의 정서를 분석하는 연구 분야이다. 정서 분석을 위해서 정서 차원 이론의 정서가와 각성 차원의 2차원 공간을 사용하고, 이 공간에서 정서가 분포하는 영역을 설정하여 매핑하는 방법을 사용한다. 그러나 기존에는 정서의 분포 영역을 임의로 설정하는 문제가 있었다. 본 논문에서는 이 문제를 해결하기 위해, 한국어 정서 단어 목록을 사용해 사용자 설문을 실시하여 2차원 상에 12개 정서의 분포를 구성하였다. 또한 2차원 상의 특정 정서 상태가 여러 개의 정서에 중첩되는 경우, 정서에 소속될 확률을 사용한 룰렛휠 방법을 사용하여 하나의 정서를 선택하는 방법을 제안하였다. 제안한 방법을 사용하여 텍스트에서 정서 단어를 추출하여 텍스트를 정서로 분류할 수 있다.
본 논문에서는 단위 시단 동안 주로 작용하는 정서를 '지배적 정서(dominant emotion)'라고 정의하고, 문학작품의 지배적 정서 흐름을 자동적으로 추출하기 위한 방법론을 제시한다. 한국어는 언어 구조적 특성상 접미어에 따라 의미가 역전되거나 달라질 수 있다. 하지만 소설이나 수필 같이 일정 이상의 분량을 가진 텍스트에서 정서 단어를 추출한다면 어느 정도 추출이 잘못되어도 지배적 정서 흐름을 판단하는 것이 가능한 것이다. 문학작품에서 지배적 정서를 추출하기 위한 절차는 다음과 같다. 먼저 문학작품의 전제 텍스트에서 형태소를 분석하여 형태소 단위의 단어를 추출한다. 추출된 단어를 정서 단어 데이터베이스와 매칭하여 정서적 의미를 담고 있는 단어를 분리해 낸다. 분리된 단어들을 정서 모델에 사상하여 해당 단어가 갖고 있는 정서를 도출한다. 도출된 정서 단어들을 통해 지배적 정서를 분석한다. 제안한 방법론에 따라 현진건의 현대소설 '운수 좋은 날'과 윤오영의 수필 '방망이 깎던 노인'을 분석한 결과, 지배적 정서의 흐름을 파악할 수 있었다.
본 연구에서는 한국어의 정서관련 어휘분석을 통하여 내적체계의 차원을 알아보고자 하였다. 이를 위해 연구1에서는 내적경험을 표현하는 데 자주 쓰이는 어휘들을 자유연상을 통해 100개를 선정하고 유사성과 빈도평가 자료를 다차원분석한 결과, 1차원(63%)은 불쾌, 2차원(25%)은 각성수준으로 해석될 수 있었고, 이는 기존의 차원모형의 주장과 거의 유사한 결과였다. 다른 이휘목록을 사용하였을 때의 결과와 비교하기 위해, 연구 2에서는 표정을 보고 정서를 추론하는 실험을 통해 자주 언급된 단어를 빈도순으로 22개 선정하였다. 이를 이용하여 같은 방법으로 다차원 분석한 결과 역시 같은 차원들이 얻어졌으나, 1차원의 비중이 훨씬 커서(89%)각성수준의 설명력은 (6%)상대적으로 작았다. 연구 3에서는 연구 1,2의 이휘목록이 전체 재적체계의 차원 공간에서 차지하는 상대적인 위치를 비교하기 위해, 두 어휘목록을 포함한 83개 내적체계의 단어를 차원평정시켜 분석하였고, 연구결과가 차원모형에서 갖는 시사점이 논의되었다.